Solve for v
v=\frac{3x_{c}}{265}
x_{c}\neq 0
Solve for x_c
x_{c}=\frac{265v}{3}
v\neq 0
Quiz
Algebra
5 problems similar to:
\frac { v } { x _ { c } } = \frac { 120 } { 1.06 \times 10 ^ { 4 } }
Share
Copied to clipboard
v=\frac{1}{10600}x_{c}\times 120
Multiply both sides of the equation by x_{c}.
v=\frac{3}{265}x_{c}
Multiply \frac{1}{10600} and 120 to get \frac{3}{265}.
v=\frac{1}{10600}x_{c}\times 120
Variable x_{c} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x_{c}.
v=\frac{3}{265}x_{c}
Multiply \frac{1}{10600} and 120 to get \frac{3}{265}.
\frac{3}{265}x_{c}=v
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{3}{265}x_{c}}{\frac{3}{265}}=\frac{v}{\frac{3}{265}}
Divide both sides of the equation by \frac{3}{265}, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{c}=\frac{v}{\frac{3}{265}}
Dividing by \frac{3}{265} undoes the multiplication by \frac{3}{265}.
x_{c}=\frac{265v}{3}
Divide v by \frac{3}{265} by multiplying v by the reciprocal of \frac{3}{265}.
x_{c}=\frac{265v}{3}\text{, }x_{c}\neq 0
Variable x_{c} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}