Solve for v
v=\frac{13y-35}{6}
Solve for y
y=\frac{6v+35}{13}
Graph
Share
Copied to clipboard
6\left(v+3\right)-12\left(y-3\right)-4\left(y+7\right)=-3\left(3+y\right)
Multiply both sides of the equation by 24, the least common multiple of 4,2,6,-8.
6v+18-12\left(y-3\right)-4\left(y+7\right)=-3\left(3+y\right)
Use the distributive property to multiply 6 by v+3.
6v+18-12y+36-4\left(y+7\right)=-3\left(3+y\right)
Use the distributive property to multiply -12 by y-3.
6v+54-12y-4\left(y+7\right)=-3\left(3+y\right)
Add 18 and 36 to get 54.
6v+54-12y-4y-28=-3\left(3+y\right)
Use the distributive property to multiply -4 by y+7.
6v+54-16y-28=-3\left(3+y\right)
Combine -12y and -4y to get -16y.
6v+26-16y=-3\left(3+y\right)
Subtract 28 from 54 to get 26.
6v+26-16y=-9-3y
Use the distributive property to multiply -3 by 3+y.
6v-16y=-9-3y-26
Subtract 26 from both sides.
6v-16y=-35-3y
Subtract 26 from -9 to get -35.
6v=-35-3y+16y
Add 16y to both sides.
6v=-35+13y
Combine -3y and 16y to get 13y.
6v=13y-35
The equation is in standard form.
\frac{6v}{6}=\frac{13y-35}{6}
Divide both sides by 6.
v=\frac{13y-35}{6}
Dividing by 6 undoes the multiplication by 6.
6\left(v+3\right)-12\left(y-3\right)-4\left(y+7\right)=-3\left(3+y\right)
Multiply both sides of the equation by 24, the least common multiple of 4,2,6,-8.
6v+18-12\left(y-3\right)-4\left(y+7\right)=-3\left(3+y\right)
Use the distributive property to multiply 6 by v+3.
6v+18-12y+36-4\left(y+7\right)=-3\left(3+y\right)
Use the distributive property to multiply -12 by y-3.
6v+54-12y-4\left(y+7\right)=-3\left(3+y\right)
Add 18 and 36 to get 54.
6v+54-12y-4y-28=-3\left(3+y\right)
Use the distributive property to multiply -4 by y+7.
6v+54-16y-28=-3\left(3+y\right)
Combine -12y and -4y to get -16y.
6v+26-16y=-3\left(3+y\right)
Subtract 28 from 54 to get 26.
6v+26-16y=-9-3y
Use the distributive property to multiply -3 by 3+y.
6v+26-16y+3y=-9
Add 3y to both sides.
6v+26-13y=-9
Combine -16y and 3y to get -13y.
26-13y=-9-6v
Subtract 6v from both sides.
-13y=-9-6v-26
Subtract 26 from both sides.
-13y=-35-6v
Subtract 26 from -9 to get -35.
-13y=-6v-35
The equation is in standard form.
\frac{-13y}{-13}=\frac{-6v-35}{-13}
Divide both sides by -13.
y=\frac{-6v-35}{-13}
Dividing by -13 undoes the multiplication by -13.
y=\frac{6v+35}{13}
Divide -35-6v by -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}