Evaluate
\frac{v^{3}+v^{2}+2v-12}{\left(v-6\right)v^{2}}
Expand
\frac{v^{3}+v^{2}+2v-12}{\left(v-6\right)v^{2}}
Share
Copied to clipboard
\frac{\left(v+1\right)\times 3v^{2}}{3\left(v-6\right)v^{2}}+\frac{6\left(v-6\right)}{3\left(v-6\right)v^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v-6 and 3v^{2} is 3\left(v-6\right)v^{2}. Multiply \frac{v+1}{v-6} times \frac{3v^{2}}{3v^{2}}. Multiply \frac{6}{3v^{2}} times \frac{v-6}{v-6}.
\frac{\left(v+1\right)\times 3v^{2}+6\left(v-6\right)}{3\left(v-6\right)v^{2}}
Since \frac{\left(v+1\right)\times 3v^{2}}{3\left(v-6\right)v^{2}} and \frac{6\left(v-6\right)}{3\left(v-6\right)v^{2}} have the same denominator, add them by adding their numerators.
\frac{3v^{3}+3v^{2}+6v-36}{3\left(v-6\right)v^{2}}
Do the multiplications in \left(v+1\right)\times 3v^{2}+6\left(v-6\right).
\frac{3\left(v^{3}+v^{2}+2v-12\right)}{3\left(v-6\right)v^{2}}
Factor the expressions that are not already factored in \frac{3v^{3}+3v^{2}+6v-36}{3\left(v-6\right)v^{2}}.
\frac{v^{3}+v^{2}+2v-12}{\left(v-6\right)v^{2}}
Cancel out 3 in both numerator and denominator.
\frac{v^{3}+v^{2}+2v-12}{v^{3}-6v^{2}}
Expand \left(v-6\right)v^{2}.
\frac{\left(v+1\right)\times 3v^{2}}{3\left(v-6\right)v^{2}}+\frac{6\left(v-6\right)}{3\left(v-6\right)v^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v-6 and 3v^{2} is 3\left(v-6\right)v^{2}. Multiply \frac{v+1}{v-6} times \frac{3v^{2}}{3v^{2}}. Multiply \frac{6}{3v^{2}} times \frac{v-6}{v-6}.
\frac{\left(v+1\right)\times 3v^{2}+6\left(v-6\right)}{3\left(v-6\right)v^{2}}
Since \frac{\left(v+1\right)\times 3v^{2}}{3\left(v-6\right)v^{2}} and \frac{6\left(v-6\right)}{3\left(v-6\right)v^{2}} have the same denominator, add them by adding their numerators.
\frac{3v^{3}+3v^{2}+6v-36}{3\left(v-6\right)v^{2}}
Do the multiplications in \left(v+1\right)\times 3v^{2}+6\left(v-6\right).
\frac{3\left(v^{3}+v^{2}+2v-12\right)}{3\left(v-6\right)v^{2}}
Factor the expressions that are not already factored in \frac{3v^{3}+3v^{2}+6v-36}{3\left(v-6\right)v^{2}}.
\frac{v^{3}+v^{2}+2v-12}{\left(v-6\right)v^{2}}
Cancel out 3 in both numerator and denominator.
\frac{v^{3}+v^{2}+2v-12}{v^{3}-6v^{2}}
Expand \left(v-6\right)v^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}