\frac { u } { x u \text { us } u z } = c
Solve for c
c=\frac{1}{sxzu^{2}}
x\neq 0\text{ and }u\neq 0\text{ and }s\neq 0\text{ and }z\neq 0
Solve for s
s=\frac{1}{cxzu^{2}}
u\neq 0\text{ and }c\neq 0\text{ and }z\neq 0\text{ and }x\neq 0
Share
Copied to clipboard
u=csxzu^{3}
Multiply both sides of the equation by sxzu^{3}.
csxzu^{3}=u
Swap sides so that all variable terms are on the left hand side.
sxzu^{3}c=u
The equation is in standard form.
\frac{sxzu^{3}c}{sxzu^{3}}=\frac{u}{sxzu^{3}}
Divide both sides by sxzu^{3}.
c=\frac{u}{sxzu^{3}}
Dividing by sxzu^{3} undoes the multiplication by sxzu^{3}.
c=\frac{1}{sxzu^{2}}
Divide u by sxzu^{3}.
u=csxzu^{3}
Variable s cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by sxzu^{3}.
csxzu^{3}=u
Swap sides so that all variable terms are on the left hand side.
cxzu^{3}s=u
The equation is in standard form.
\frac{cxzu^{3}s}{cxzu^{3}}=\frac{u}{cxzu^{3}}
Divide both sides by cxzu^{3}.
s=\frac{u}{cxzu^{3}}
Dividing by cxzu^{3} undoes the multiplication by cxzu^{3}.
s=\frac{1}{cxzu^{2}}
Divide u by cxzu^{3}.
s=\frac{1}{cxzu^{2}}\text{, }s\neq 0
Variable s cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}