Solve for u
u=-4v-28
Solve for v
v=-\frac{u}{4}-7
Share
Copied to clipboard
u+140+4u+20v=0
Multiply both sides of the equation by 20, the least common multiple of 20,5.
5u+140+20v=0
Combine u and 4u to get 5u.
5u+20v=-140
Subtract 140 from both sides. Anything subtracted from zero gives its negation.
5u=-140-20v
Subtract 20v from both sides.
5u=-20v-140
The equation is in standard form.
\frac{5u}{5}=\frac{-20v-140}{5}
Divide both sides by 5.
u=\frac{-20v-140}{5}
Dividing by 5 undoes the multiplication by 5.
u=-4v-28
Divide -140-20v by 5.
u+140+4u+20v=0
Multiply both sides of the equation by 20, the least common multiple of 20,5.
5u+140+20v=0
Combine u and 4u to get 5u.
140+20v=-5u
Subtract 5u from both sides. Anything subtracted from zero gives its negation.
20v=-5u-140
Subtract 140 from both sides.
\frac{20v}{20}=\frac{-5u-140}{20}
Divide both sides by 20.
v=\frac{-5u-140}{20}
Dividing by 20 undoes the multiplication by 20.
v=-\frac{u}{4}-7
Divide -5u-140 by 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}