Solve for u
u=-4
Share
Copied to clipboard
\left(u+9\right)\left(u+10\right)=\left(u+1\right)\left(u-6\right)
Variable u cannot be equal to any of the values -9,-1 since division by zero is not defined. Multiply both sides of the equation by \left(u+1\right)\left(u+9\right), the least common multiple of u+1,u+9.
u^{2}+19u+90=\left(u+1\right)\left(u-6\right)
Use the distributive property to multiply u+9 by u+10 and combine like terms.
u^{2}+19u+90=u^{2}-5u-6
Use the distributive property to multiply u+1 by u-6 and combine like terms.
u^{2}+19u+90-u^{2}=-5u-6
Subtract u^{2} from both sides.
19u+90=-5u-6
Combine u^{2} and -u^{2} to get 0.
19u+90+5u=-6
Add 5u to both sides.
24u+90=-6
Combine 19u and 5u to get 24u.
24u=-6-90
Subtract 90 from both sides.
24u=-96
Subtract 90 from -6 to get -96.
u=\frac{-96}{24}
Divide both sides by 24.
u=-4
Divide -96 by 24 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}