Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}-\frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t-17 and t-11 is \left(t-17\right)\left(t-11\right). Multiply \frac{t-15}{t-17} times \frac{t-11}{t-11}. Multiply \frac{t-9}{t-11} times \frac{t-17}{t-17}.
\frac{\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
Since \frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} and \frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{t^{2}-11t-15t+165-t^{2}+17t+9t-153}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
Do the multiplications in \left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right).
\frac{12}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
Combine like terms in t^{2}-11t-15t+165-t^{2}+17t+9t-153.
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-17\right)\left(t-11\right) and t-5 is \left(t-17\right)\left(t-11\right)\left(t-5\right). Multiply \frac{12}{\left(t-17\right)\left(t-11\right)} times \frac{t-5}{t-5}. Multiply \frac{t-3}{t-5} times \frac{\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}.
\frac{12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
Since \frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} and \frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
Do the multiplications in 12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right).
\frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
Combine like terms in 12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561.
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}-\frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-17\right)\left(t-11\right)\left(t-5\right) and t-3 is \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right). Multiply \frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} times \frac{t-3}{t-3}. Multiply \frac{t-7}{t-3} times \frac{\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}.
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
Since \frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} and \frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
Do the multiplications in \left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right).
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
Combine like terms in -259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545.
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{t^{4}-36t^{3}+426t^{2}-1916t+2805}
Expand \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right).
\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}-\frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t-17 and t-11 is \left(t-17\right)\left(t-11\right). Multiply \frac{t-15}{t-17} times \frac{t-11}{t-11}. Multiply \frac{t-9}{t-11} times \frac{t-17}{t-17}.
\frac{\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
Since \frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} and \frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{t^{2}-11t-15t+165-t^{2}+17t+9t-153}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
Do the multiplications in \left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right).
\frac{12}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
Combine like terms in t^{2}-11t-15t+165-t^{2}+17t+9t-153.
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-17\right)\left(t-11\right) and t-5 is \left(t-17\right)\left(t-11\right)\left(t-5\right). Multiply \frac{12}{\left(t-17\right)\left(t-11\right)} times \frac{t-5}{t-5}. Multiply \frac{t-3}{t-5} times \frac{\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}.
\frac{12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
Since \frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} and \frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
Do the multiplications in 12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right).
\frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
Combine like terms in 12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561.
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}-\frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-17\right)\left(t-11\right)\left(t-5\right) and t-3 is \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right). Multiply \frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} times \frac{t-3}{t-3}. Multiply \frac{t-7}{t-3} times \frac{\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}.
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
Since \frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} and \frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
Do the multiplications in \left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right).
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
Combine like terms in -259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545.
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{t^{4}-36t^{3}+426t^{2}-1916t+2805}
Expand \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right).