Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{tt}{t\left(t+4\right)}+\frac{\left(8-t\right)\left(t+4\right)}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t+4 and t is t\left(t+4\right). Multiply \frac{t}{t+4} times \frac{t}{t}. Multiply \frac{8-t}{t} times \frac{t+4}{t+4}.
\frac{tt+\left(8-t\right)\left(t+4\right)}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
Since \frac{tt}{t\left(t+4\right)} and \frac{\left(8-t\right)\left(t+4\right)}{t\left(t+4\right)} have the same denominator, add them by adding their numerators.
\frac{t^{2}+8t+32-t^{2}-4t}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
Do the multiplications in tt+\left(8-t\right)\left(t+4\right).
\frac{4t+32}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
Combine like terms in t^{2}+8t+32-t^{2}-4t.
\frac{4t+32}{t\left(t+4\right)}-\frac{16}{t\left(t+4\right)}
Factor t^{2}+4t.
\frac{4t+32-16}{t\left(t+4\right)}
Since \frac{4t+32}{t\left(t+4\right)} and \frac{16}{t\left(t+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4t+16}{t\left(t+4\right)}
Combine like terms in 4t+32-16.
\frac{4\left(t+4\right)}{t\left(t+4\right)}
Factor the expressions that are not already factored in \frac{4t+16}{t\left(t+4\right)}.
\frac{4}{t}
Cancel out t+4 in both numerator and denominator.
\frac{tt}{t\left(t+4\right)}+\frac{\left(8-t\right)\left(t+4\right)}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t+4 and t is t\left(t+4\right). Multiply \frac{t}{t+4} times \frac{t}{t}. Multiply \frac{8-t}{t} times \frac{t+4}{t+4}.
\frac{tt+\left(8-t\right)\left(t+4\right)}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
Since \frac{tt}{t\left(t+4\right)} and \frac{\left(8-t\right)\left(t+4\right)}{t\left(t+4\right)} have the same denominator, add them by adding their numerators.
\frac{t^{2}+8t+32-t^{2}-4t}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
Do the multiplications in tt+\left(8-t\right)\left(t+4\right).
\frac{4t+32}{t\left(t+4\right)}-\frac{16}{t^{2}+4t}
Combine like terms in t^{2}+8t+32-t^{2}-4t.
\frac{4t+32}{t\left(t+4\right)}-\frac{16}{t\left(t+4\right)}
Factor t^{2}+4t.
\frac{4t+32-16}{t\left(t+4\right)}
Since \frac{4t+32}{t\left(t+4\right)} and \frac{16}{t\left(t+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4t+16}{t\left(t+4\right)}
Combine like terms in 4t+32-16.
\frac{4\left(t+4\right)}{t\left(t+4\right)}
Factor the expressions that are not already factored in \frac{4t+16}{t\left(t+4\right)}.
\frac{4}{t}
Cancel out t+4 in both numerator and denominator.