Solve for t
t\geq \frac{98}{15}
Share
Copied to clipboard
\frac{t}{\sqrt{\frac{100}{9}}}\geq 1.96
Reduce the fraction \frac{400}{36} to lowest terms by extracting and canceling out 4.
\frac{t}{\frac{10}{3}}\geq 1.96
Rewrite the square root of the division \frac{100}{9} as the division of square roots \frac{\sqrt{100}}{\sqrt{9}}. Take the square root of both numerator and denominator.
t\geq 1.96\times \frac{10}{3}
Multiply both sides by \frac{10}{3}. Since \frac{10}{3} is positive, the inequality direction remains the same.
t\geq \frac{49}{25}\times \frac{10}{3}
Convert decimal number 1.96 to fraction \frac{196}{100}. Reduce the fraction \frac{196}{100} to lowest terms by extracting and canceling out 4.
t\geq \frac{49\times 10}{25\times 3}
Multiply \frac{49}{25} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
t\geq \frac{490}{75}
Do the multiplications in the fraction \frac{49\times 10}{25\times 3}.
t\geq \frac{98}{15}
Reduce the fraction \frac{490}{75} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}