Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(t^{2}-25\right)\left(8t+40\right)}{\left(4t+20\right)\left(2t^{2}-20t+50\right)}
Divide \frac{t^{2}-25}{4t+20} by \frac{2t^{2}-20t+50}{8t+40} by multiplying \frac{t^{2}-25}{4t+20} by the reciprocal of \frac{2t^{2}-20t+50}{8t+40}.
\frac{8\left(t-5\right)\left(t+5\right)^{2}}{2\times 4\left(t+5\right)\left(t-5\right)^{2}}
Factor the expressions that are not already factored.
\frac{t+5}{t-5}
Cancel out 2\times 4\left(t-5\right)\left(t+5\right) in both numerator and denominator.
\frac{\left(t^{2}-25\right)\left(8t+40\right)}{\left(4t+20\right)\left(2t^{2}-20t+50\right)}
Divide \frac{t^{2}-25}{4t+20} by \frac{2t^{2}-20t+50}{8t+40} by multiplying \frac{t^{2}-25}{4t+20} by the reciprocal of \frac{2t^{2}-20t+50}{8t+40}.
\frac{8\left(t-5\right)\left(t+5\right)^{2}}{2\times 4\left(t+5\right)\left(t-5\right)^{2}}
Factor the expressions that are not already factored.
\frac{t+5}{t-5}
Cancel out 2\times 4\left(t-5\right)\left(t+5\right) in both numerator and denominator.