Evaluate
\frac{t+5}{t-5}
Expand
\frac{t+5}{t-5}
Share
Copied to clipboard
\frac{\left(t^{2}-25\right)\left(8t+40\right)}{\left(4t+20\right)\left(2t^{2}-20t+50\right)}
Divide \frac{t^{2}-25}{4t+20} by \frac{2t^{2}-20t+50}{8t+40} by multiplying \frac{t^{2}-25}{4t+20} by the reciprocal of \frac{2t^{2}-20t+50}{8t+40}.
\frac{8\left(t-5\right)\left(t+5\right)^{2}}{2\times 4\left(t+5\right)\left(t-5\right)^{2}}
Factor the expressions that are not already factored.
\frac{t+5}{t-5}
Cancel out 2\times 4\left(t-5\right)\left(t+5\right) in both numerator and denominator.
\frac{\left(t^{2}-25\right)\left(8t+40\right)}{\left(4t+20\right)\left(2t^{2}-20t+50\right)}
Divide \frac{t^{2}-25}{4t+20} by \frac{2t^{2}-20t+50}{8t+40} by multiplying \frac{t^{2}-25}{4t+20} by the reciprocal of \frac{2t^{2}-20t+50}{8t+40}.
\frac{8\left(t-5\right)\left(t+5\right)^{2}}{2\times 4\left(t+5\right)\left(t-5\right)^{2}}
Factor the expressions that are not already factored.
\frac{t+5}{t-5}
Cancel out 2\times 4\left(t-5\right)\left(t+5\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}