Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(t^{2}+8t+15\right)\left(t^{2}+3t+2\right)}{\left(t^{2}+2t+1\right)\left(t^{2}+7t+10\right)}
Divide \frac{t^{2}+8t+15}{t^{2}+2t+1} by \frac{t^{2}+7t+10}{t^{2}+3t+2} by multiplying \frac{t^{2}+8t+15}{t^{2}+2t+1} by the reciprocal of \frac{t^{2}+7t+10}{t^{2}+3t+2}.
\frac{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t+5\right)}{\left(t+2\right)\left(t+5\right)\left(t+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{t+3}{t+1}
Cancel out \left(t+1\right)\left(t+2\right)\left(t+5\right) in both numerator and denominator.
\frac{\left(t^{2}+8t+15\right)\left(t^{2}+3t+2\right)}{\left(t^{2}+2t+1\right)\left(t^{2}+7t+10\right)}
Divide \frac{t^{2}+8t+15}{t^{2}+2t+1} by \frac{t^{2}+7t+10}{t^{2}+3t+2} by multiplying \frac{t^{2}+8t+15}{t^{2}+2t+1} by the reciprocal of \frac{t^{2}+7t+10}{t^{2}+3t+2}.
\frac{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t+5\right)}{\left(t+2\right)\left(t+5\right)\left(t+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{t+3}{t+1}
Cancel out \left(t+1\right)\left(t+2\right)\left(t+5\right) in both numerator and denominator.