Evaluate
-\frac{1}{\left(t-1\right)\left(t+3\right)}
Expand
\frac{1}{\left(1-t\right)\left(t+3\right)}
Share
Copied to clipboard
\frac{t\left(t+3\right)}{\left(t-1\right)\left(-t-1\right)t^{2}}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Factor the expressions that are not already factored in \frac{t^{2}+3t}{t^{2}-t^{4}}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Cancel out t in both numerator and denominator.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{\left(t+1\right)t^{2}}{t\left(t+3\right)^{2}}
Factor the expressions that are not already factored in \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}}
Cancel out t in both numerator and denominator.
\frac{\left(t+3\right)t\left(t+1\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Multiply \frac{t+3}{t\left(t-1\right)\left(-t-1\right)} times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-t\left(-t-1\right)\left(t+3\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Extract the negative sign in t+1.
\frac{-1}{\left(t-1\right)\left(t+3\right)}
Cancel out t\left(-t-1\right)\left(t+3\right) in both numerator and denominator.
\frac{-1}{t^{2}+2t-3}
Use the distributive property to multiply t-1 by t+3 and combine like terms.
\frac{t\left(t+3\right)}{\left(t-1\right)\left(-t-1\right)t^{2}}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Factor the expressions that are not already factored in \frac{t^{2}+3t}{t^{2}-t^{4}}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Cancel out t in both numerator and denominator.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{\left(t+1\right)t^{2}}{t\left(t+3\right)^{2}}
Factor the expressions that are not already factored in \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}}
Cancel out t in both numerator and denominator.
\frac{\left(t+3\right)t\left(t+1\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Multiply \frac{t+3}{t\left(t-1\right)\left(-t-1\right)} times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-t\left(-t-1\right)\left(t+3\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Extract the negative sign in t+1.
\frac{-1}{\left(t-1\right)\left(t+3\right)}
Cancel out t\left(-t-1\right)\left(t+3\right) in both numerator and denominator.
\frac{-1}{t^{2}+2t-3}
Use the distributive property to multiply t-1 by t+3 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}