Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{t\left(t+3\right)}{\left(t-1\right)\left(-t-1\right)t^{2}}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Factor the expressions that are not already factored in \frac{t^{2}+3t}{t^{2}-t^{4}}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Cancel out t in both numerator and denominator.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{\left(t+1\right)t^{2}}{t\left(t+3\right)^{2}}
Factor the expressions that are not already factored in \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}}
Cancel out t in both numerator and denominator.
\frac{\left(t+3\right)t\left(t+1\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Multiply \frac{t+3}{t\left(t-1\right)\left(-t-1\right)} times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-t\left(-t-1\right)\left(t+3\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Extract the negative sign in t+1.
\frac{-1}{\left(t-1\right)\left(t+3\right)}
Cancel out t\left(-t-1\right)\left(t+3\right) in both numerator and denominator.
\frac{-1}{t^{2}+2t-3}
Use the distributive property to multiply t-1 by t+3 and combine like terms.
\frac{t\left(t+3\right)}{\left(t-1\right)\left(-t-1\right)t^{2}}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Factor the expressions that are not already factored in \frac{t^{2}+3t}{t^{2}-t^{4}}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}
Cancel out t in both numerator and denominator.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{\left(t+1\right)t^{2}}{t\left(t+3\right)^{2}}
Factor the expressions that are not already factored in \frac{t^{2}+t^{3}}{t^{3}+6t^{2}+9t}.
\frac{t+3}{t\left(t-1\right)\left(-t-1\right)}\times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}}
Cancel out t in both numerator and denominator.
\frac{\left(t+3\right)t\left(t+1\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Multiply \frac{t+3}{t\left(t-1\right)\left(-t-1\right)} times \frac{t\left(t+1\right)}{\left(t+3\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-t\left(-t-1\right)\left(t+3\right)}{t\left(t-1\right)\left(-t-1\right)\left(t+3\right)^{2}}
Extract the negative sign in t+1.
\frac{-1}{\left(t-1\right)\left(t+3\right)}
Cancel out t\left(-t-1\right)\left(t+3\right) in both numerator and denominator.
\frac{-1}{t^{2}+2t-3}
Use the distributive property to multiply t-1 by t+3 and combine like terms.