Solve for t
t=1
Share
Copied to clipboard
\left(t+1\right)\left(t+7\right)=\left(t-9\right)\left(t-3\right)
Variable t cannot be equal to any of the values -1,9 since division by zero is not defined. Multiply both sides of the equation by \left(t-9\right)\left(t+1\right), the least common multiple of t-9,t+1.
t^{2}+8t+7=\left(t-9\right)\left(t-3\right)
Use the distributive property to multiply t+1 by t+7 and combine like terms.
t^{2}+8t+7=t^{2}-12t+27
Use the distributive property to multiply t-9 by t-3 and combine like terms.
t^{2}+8t+7-t^{2}=-12t+27
Subtract t^{2} from both sides.
8t+7=-12t+27
Combine t^{2} and -t^{2} to get 0.
8t+7+12t=27
Add 12t to both sides.
20t+7=27
Combine 8t and 12t to get 20t.
20t=27-7
Subtract 7 from both sides.
20t=20
Subtract 7 from 27 to get 20.
t=\frac{20}{20}
Divide both sides by 20.
t=1
Divide 20 by 20 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}