Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{t+1}{t^{2}+5t}+\frac{8\times 4}{t^{2}-25}
Express \frac{8}{t^{2}-25}\times 4 as a single fraction.
\frac{t+1}{t\left(t+5\right)}+\frac{8\times 4}{\left(t-5\right)\left(t+5\right)}
Factor t^{2}+5t. Factor t^{2}-25.
\frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)}+\frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t\left(t+5\right) and \left(t-5\right)\left(t+5\right) is t\left(t-5\right)\left(t+5\right). Multiply \frac{t+1}{t\left(t+5\right)} times \frac{t-5}{t-5}. Multiply \frac{8\times 4}{\left(t-5\right)\left(t+5\right)} times \frac{t}{t}.
\frac{\left(t+1\right)\left(t-5\right)+8\times 4t}{t\left(t-5\right)\left(t+5\right)}
Since \frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)} and \frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)} have the same denominator, add them by adding their numerators.
\frac{t^{2}-5t+t-5+32t}{t\left(t-5\right)\left(t+5\right)}
Do the multiplications in \left(t+1\right)\left(t-5\right)+8\times 4t.
\frac{t^{2}+28t-5}{t\left(t-5\right)\left(t+5\right)}
Combine like terms in t^{2}-5t+t-5+32t.
\frac{t^{2}+28t-5}{t^{3}-25t}
Expand t\left(t-5\right)\left(t+5\right).
\frac{t+1}{t^{2}+5t}+\frac{8\times 4}{t^{2}-25}
Express \frac{8}{t^{2}-25}\times 4 as a single fraction.
\frac{t+1}{t\left(t+5\right)}+\frac{8\times 4}{\left(t-5\right)\left(t+5\right)}
Factor t^{2}+5t. Factor t^{2}-25.
\frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)}+\frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t\left(t+5\right) and \left(t-5\right)\left(t+5\right) is t\left(t-5\right)\left(t+5\right). Multiply \frac{t+1}{t\left(t+5\right)} times \frac{t-5}{t-5}. Multiply \frac{8\times 4}{\left(t-5\right)\left(t+5\right)} times \frac{t}{t}.
\frac{\left(t+1\right)\left(t-5\right)+8\times 4t}{t\left(t-5\right)\left(t+5\right)}
Since \frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)} and \frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)} have the same denominator, add them by adding their numerators.
\frac{t^{2}-5t+t-5+32t}{t\left(t-5\right)\left(t+5\right)}
Do the multiplications in \left(t+1\right)\left(t-5\right)+8\times 4t.
\frac{t^{2}+28t-5}{t\left(t-5\right)\left(t+5\right)}
Combine like terms in t^{2}-5t+t-5+32t.
\frac{t^{2}+28t-5}{t^{3}-25t}
Expand t\left(t-5\right)\left(t+5\right).