Evaluate
\frac{t^{2}+28t-5}{t\left(t^{2}-25\right)}
Expand
\frac{t^{2}+28t-5}{t\left(t^{2}-25\right)}
Share
Copied to clipboard
\frac{t+1}{t^{2}+5t}+\frac{8\times 4}{t^{2}-25}
Express \frac{8}{t^{2}-25}\times 4 as a single fraction.
\frac{t+1}{t\left(t+5\right)}+\frac{8\times 4}{\left(t-5\right)\left(t+5\right)}
Factor t^{2}+5t. Factor t^{2}-25.
\frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)}+\frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t\left(t+5\right) and \left(t-5\right)\left(t+5\right) is t\left(t-5\right)\left(t+5\right). Multiply \frac{t+1}{t\left(t+5\right)} times \frac{t-5}{t-5}. Multiply \frac{8\times 4}{\left(t-5\right)\left(t+5\right)} times \frac{t}{t}.
\frac{\left(t+1\right)\left(t-5\right)+8\times 4t}{t\left(t-5\right)\left(t+5\right)}
Since \frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)} and \frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)} have the same denominator, add them by adding their numerators.
\frac{t^{2}-5t+t-5+32t}{t\left(t-5\right)\left(t+5\right)}
Do the multiplications in \left(t+1\right)\left(t-5\right)+8\times 4t.
\frac{t^{2}+28t-5}{t\left(t-5\right)\left(t+5\right)}
Combine like terms in t^{2}-5t+t-5+32t.
\frac{t^{2}+28t-5}{t^{3}-25t}
Expand t\left(t-5\right)\left(t+5\right).
\frac{t+1}{t^{2}+5t}+\frac{8\times 4}{t^{2}-25}
Express \frac{8}{t^{2}-25}\times 4 as a single fraction.
\frac{t+1}{t\left(t+5\right)}+\frac{8\times 4}{\left(t-5\right)\left(t+5\right)}
Factor t^{2}+5t. Factor t^{2}-25.
\frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)}+\frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t\left(t+5\right) and \left(t-5\right)\left(t+5\right) is t\left(t-5\right)\left(t+5\right). Multiply \frac{t+1}{t\left(t+5\right)} times \frac{t-5}{t-5}. Multiply \frac{8\times 4}{\left(t-5\right)\left(t+5\right)} times \frac{t}{t}.
\frac{\left(t+1\right)\left(t-5\right)+8\times 4t}{t\left(t-5\right)\left(t+5\right)}
Since \frac{\left(t+1\right)\left(t-5\right)}{t\left(t-5\right)\left(t+5\right)} and \frac{8\times 4t}{t\left(t-5\right)\left(t+5\right)} have the same denominator, add them by adding their numerators.
\frac{t^{2}-5t+t-5+32t}{t\left(t-5\right)\left(t+5\right)}
Do the multiplications in \left(t+1\right)\left(t-5\right)+8\times 4t.
\frac{t^{2}+28t-5}{t\left(t-5\right)\left(t+5\right)}
Combine like terms in t^{2}-5t+t-5+32t.
\frac{t^{2}+28t-5}{t^{3}-25t}
Expand t\left(t-5\right)\left(t+5\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}