Solve for s
s=\frac{4t}{3}
t\neq 0
Solve for t
t=\frac{3s}{4}
s\neq 0
Share
Copied to clipboard
3\left(s-t\right)=t
Multiply both sides of the equation by 3t, the least common multiple of t,3.
3s-3t=t
Use the distributive property to multiply 3 by s-t.
3s=t+3t
Add 3t to both sides.
3s=4t
Combine t and 3t to get 4t.
\frac{3s}{3}=\frac{4t}{3}
Divide both sides by 3.
s=\frac{4t}{3}
Dividing by 3 undoes the multiplication by 3.
3\left(s-t\right)=t
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3t, the least common multiple of t,3.
3s-3t=t
Use the distributive property to multiply 3 by s-t.
3s-3t-t=0
Subtract t from both sides.
3s-4t=0
Combine -3t and -t to get -4t.
-4t=-3s
Subtract 3s from both sides. Anything subtracted from zero gives its negation.
\frac{-4t}{-4}=-\frac{3s}{-4}
Divide both sides by -4.
t=-\frac{3s}{-4}
Dividing by -4 undoes the multiplication by -4.
t=\frac{3s}{4}
Divide -3s by -4.
t=\frac{3s}{4}\text{, }t\neq 0
Variable t cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}