Solve for s
s = \frac{187}{28} = 6\frac{19}{28} \approx 6.678571429
Share
Copied to clipboard
15\left(s-4\right)+15\left(s-3\right)=10\left(2s-5\right)-6\left(3s-22\right)
Multiply both sides of the equation by 30, the least common multiple of 2,3,5.
15s-60+15\left(s-3\right)=10\left(2s-5\right)-6\left(3s-22\right)
Use the distributive property to multiply 15 by s-4.
15s-60+15s-45=10\left(2s-5\right)-6\left(3s-22\right)
Use the distributive property to multiply 15 by s-3.
30s-60-45=10\left(2s-5\right)-6\left(3s-22\right)
Combine 15s and 15s to get 30s.
30s-105=10\left(2s-5\right)-6\left(3s-22\right)
Subtract 45 from -60 to get -105.
30s-105=20s-50-6\left(3s-22\right)
Use the distributive property to multiply 10 by 2s-5.
30s-105=20s-50-18s+132
Use the distributive property to multiply -6 by 3s-22.
30s-105=2s-50+132
Combine 20s and -18s to get 2s.
30s-105=2s+82
Add -50 and 132 to get 82.
30s-105-2s=82
Subtract 2s from both sides.
28s-105=82
Combine 30s and -2s to get 28s.
28s=82+105
Add 105 to both sides.
28s=187
Add 82 and 105 to get 187.
s=\frac{187}{28}
Divide both sides by 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}