Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. s
Tick mark Image

Similar Problems from Web Search

Share

\frac{s}{s^{2}+1}+2+\frac{1}{s}
Add 1 and 1 to get 2.
\frac{s}{s^{2}+1}+\frac{2\left(s^{2}+1\right)}{s^{2}+1}+\frac{1}{s}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{s^{2}+1}{s^{2}+1}.
\frac{s+2\left(s^{2}+1\right)}{s^{2}+1}+\frac{1}{s}
Since \frac{s}{s^{2}+1} and \frac{2\left(s^{2}+1\right)}{s^{2}+1} have the same denominator, add them by adding their numerators.
\frac{s+2s^{2}+2}{s^{2}+1}+\frac{1}{s}
Do the multiplications in s+2\left(s^{2}+1\right).
\frac{\left(s+2s^{2}+2\right)s}{s\left(s^{2}+1\right)}+\frac{s^{2}+1}{s\left(s^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s^{2}+1 and s is s\left(s^{2}+1\right). Multiply \frac{s+2s^{2}+2}{s^{2}+1} times \frac{s}{s}. Multiply \frac{1}{s} times \frac{s^{2}+1}{s^{2}+1}.
\frac{\left(s+2s^{2}+2\right)s+s^{2}+1}{s\left(s^{2}+1\right)}
Since \frac{\left(s+2s^{2}+2\right)s}{s\left(s^{2}+1\right)} and \frac{s^{2}+1}{s\left(s^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{s^{2}+2s^{3}+2s+s^{2}+1}{s\left(s^{2}+1\right)}
Do the multiplications in \left(s+2s^{2}+2\right)s+s^{2}+1.
\frac{2s^{2}+2s^{3}+2s+1}{s\left(s^{2}+1\right)}
Combine like terms in s^{2}+2s^{3}+2s+s^{2}+1.
\frac{2s^{2}+2s^{3}+2s+1}{s^{3}+s}
Expand s\left(s^{2}+1\right).