Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(s^{2}-9t^{2}\right)\times 16st^{2}}{4s^{2}t\left(5s+15t\right)}
Divide \frac{s^{2}-9t^{2}}{4s^{2}t} by \frac{5s+15t}{16st^{2}} by multiplying \frac{s^{2}-9t^{2}}{4s^{2}t} by the reciprocal of \frac{5s+15t}{16st^{2}}.
\frac{4t\left(s^{2}-9t^{2}\right)}{s\left(5s+15t\right)}
Cancel out 4st in both numerator and denominator.
\frac{4t\left(s-3t\right)\left(s+3t\right)}{5s\left(s+3t\right)}
Factor the expressions that are not already factored.
\frac{4t\left(s-3t\right)}{5s}
Cancel out s+3t in both numerator and denominator.
\frac{4st-12t^{2}}{5s}
Expand the expression.
\frac{\left(s^{2}-9t^{2}\right)\times 16st^{2}}{4s^{2}t\left(5s+15t\right)}
Divide \frac{s^{2}-9t^{2}}{4s^{2}t} by \frac{5s+15t}{16st^{2}} by multiplying \frac{s^{2}-9t^{2}}{4s^{2}t} by the reciprocal of \frac{5s+15t}{16st^{2}}.
\frac{4t\left(s^{2}-9t^{2}\right)}{s\left(5s+15t\right)}
Cancel out 4st in both numerator and denominator.
\frac{4t\left(s-3t\right)\left(s+3t\right)}{5s\left(s+3t\right)}
Factor the expressions that are not already factored.
\frac{4t\left(s-3t\right)}{5s}
Cancel out s+3t in both numerator and denominator.
\frac{4st-12t^{2}}{5s}
Expand the expression.