Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(s^{2}-5s\right)\left(s-3\right)}{\left(s^{2}-8s+15\right)\left(s+3\right)}
Divide \frac{s^{2}-5s}{s^{2}-8s+15} by \frac{s+3}{s-3} by multiplying \frac{s^{2}-5s}{s^{2}-8s+15} by the reciprocal of \frac{s+3}{s-3}.
\frac{s\left(s-5\right)\left(s-3\right)}{\left(s-5\right)\left(s-3\right)\left(s+3\right)}
Factor the expressions that are not already factored.
\frac{s}{s+3}
Cancel out \left(s-5\right)\left(s-3\right) in both numerator and denominator.
\frac{\left(s^{2}-5s\right)\left(s-3\right)}{\left(s^{2}-8s+15\right)\left(s+3\right)}
Divide \frac{s^{2}-5s}{s^{2}-8s+15} by \frac{s+3}{s-3} by multiplying \frac{s^{2}-5s}{s^{2}-8s+15} by the reciprocal of \frac{s+3}{s-3}.
\frac{s\left(s-5\right)\left(s-3\right)}{\left(s-5\right)\left(s-3\right)\left(s+3\right)}
Factor the expressions that are not already factored.
\frac{s}{s+3}
Cancel out \left(s-5\right)\left(s-3\right) in both numerator and denominator.