Solve for A
A=-\frac{Bs-s+5B-7}{s+1}
s\neq -5\text{ and }s\neq -1
Solve for B
B=-\frac{As-s+A-7}{s+5}
s\neq -5\text{ and }s\neq -1
Share
Copied to clipboard
s+7=\left(s+1\right)A+\left(s+5\right)B
Multiply both sides of the equation by \left(s+1\right)\left(s+5\right), the least common multiple of \left(s+5\right)\left(s+1\right),s+5,s+1.
s+7=sA+A+\left(s+5\right)B
Use the distributive property to multiply s+1 by A.
s+7=sA+A+sB+5B
Use the distributive property to multiply s+5 by B.
sA+A+sB+5B=s+7
Swap sides so that all variable terms are on the left hand side.
sA+A+5B=s+7-sB
Subtract sB from both sides.
sA+A=s+7-sB-5B
Subtract 5B from both sides.
\left(s+1\right)A=s+7-sB-5B
Combine all terms containing A.
\left(s+1\right)A=7-5B+s-Bs
The equation is in standard form.
\frac{\left(s+1\right)A}{s+1}=\frac{7-5B+s-Bs}{s+1}
Divide both sides by s+1.
A=\frac{7-5B+s-Bs}{s+1}
Dividing by s+1 undoes the multiplication by s+1.
s+7=\left(s+1\right)A+\left(s+5\right)B
Multiply both sides of the equation by \left(s+1\right)\left(s+5\right), the least common multiple of \left(s+5\right)\left(s+1\right),s+5,s+1.
s+7=sA+A+\left(s+5\right)B
Use the distributive property to multiply s+1 by A.
s+7=sA+A+sB+5B
Use the distributive property to multiply s+5 by B.
sA+A+sB+5B=s+7
Swap sides so that all variable terms are on the left hand side.
A+sB+5B=s+7-sA
Subtract sA from both sides.
sB+5B=s+7-sA-A
Subtract A from both sides.
\left(s+5\right)B=s+7-sA-A
Combine all terms containing B.
\left(s+5\right)B=7-A+s-As
The equation is in standard form.
\frac{\left(s+5\right)B}{s+5}=\frac{7-A+s-As}{s+5}
Divide both sides by s+5.
B=\frac{7-A+s-As}{s+5}
Dividing by s+5 undoes the multiplication by s+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}