Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5r_{1}}{500}+\frac{2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 100 and 250 is 500. Multiply \frac{r_{1}}{100} times \frac{5}{5}. Multiply \frac{v_{1}-v_{2}}{250} times \frac{2}{2}.
\frac{5r_{1}+2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{5r_{1}}{500} and \frac{2\left(v_{1}-v_{2}\right)}{500} have the same denominator, add them by adding their numerators.
\frac{5r_{1}+2v_{1}-2v_{2}}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 5r_{1}+2\left(v_{1}-v_{2}\right).
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000}+\frac{5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 500 and 200 is 1000. Multiply \frac{5r_{1}+2v_{1}-2v_{2}}{500} times \frac{2}{2}. Multiply \frac{v_{3}}{200} times \frac{5}{5}.
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000} and \frac{5v_{3}}{1000} have the same denominator, add them by adding their numerators.
\frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000}+\frac{5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1000 and 400 is 2000. Multiply \frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000} times \frac{2}{2}. Multiply \frac{v_{3}-v_{2}}{400} times \frac{5}{5}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000} and \frac{5\left(v_{3}-v_{2}\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right).
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Combine like terms in 20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2000 and 500 is 2000. Multiply \frac{v_{3}-\left(v_{2}+128\right)}{500} times \frac{4}{4}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
Since \frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000} and \frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512}{2000}
Do the multiplications in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right).
\frac{20r_{1}+8v_{1}-17v_{2}+19v_{3}-512}{2000}
Combine like terms in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512.
\frac{5r_{1}}{500}+\frac{2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 100 and 250 is 500. Multiply \frac{r_{1}}{100} times \frac{5}{5}. Multiply \frac{v_{1}-v_{2}}{250} times \frac{2}{2}.
\frac{5r_{1}+2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{5r_{1}}{500} and \frac{2\left(v_{1}-v_{2}\right)}{500} have the same denominator, add them by adding their numerators.
\frac{5r_{1}+2v_{1}-2v_{2}}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 5r_{1}+2\left(v_{1}-v_{2}\right).
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000}+\frac{5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 500 and 200 is 1000. Multiply \frac{5r_{1}+2v_{1}-2v_{2}}{500} times \frac{2}{2}. Multiply \frac{v_{3}}{200} times \frac{5}{5}.
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000} and \frac{5v_{3}}{1000} have the same denominator, add them by adding their numerators.
\frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000}+\frac{5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1000 and 400 is 2000. Multiply \frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000} times \frac{2}{2}. Multiply \frac{v_{3}-v_{2}}{400} times \frac{5}{5}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000} and \frac{5\left(v_{3}-v_{2}\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right).
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Combine like terms in 20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2000 and 500 is 2000. Multiply \frac{v_{3}-\left(v_{2}+128\right)}{500} times \frac{4}{4}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
Since \frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000} and \frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512}{2000}
Do the multiplications in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right).
\frac{20r_{1}+8v_{1}-17v_{2}+19v_{3}-512}{2000}
Combine like terms in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512.