Evaluate
\frac{r_{1}}{100}+\frac{v_{1}}{250}+\frac{19v_{3}}{2000}-\frac{17v_{2}}{2000}-\frac{32}{125}
Expand
\frac{r_{1}}{100}+\frac{v_{1}}{250}+\frac{19v_{3}}{2000}-\frac{17v_{2}}{2000}-\frac{32}{125}
Share
Copied to clipboard
\frac{5r_{1}}{500}+\frac{2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 100 and 250 is 500. Multiply \frac{r_{1}}{100} times \frac{5}{5}. Multiply \frac{v_{1}-v_{2}}{250} times \frac{2}{2}.
\frac{5r_{1}+2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{5r_{1}}{500} and \frac{2\left(v_{1}-v_{2}\right)}{500} have the same denominator, add them by adding their numerators.
\frac{5r_{1}+2v_{1}-2v_{2}}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 5r_{1}+2\left(v_{1}-v_{2}\right).
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000}+\frac{5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 500 and 200 is 1000. Multiply \frac{5r_{1}+2v_{1}-2v_{2}}{500} times \frac{2}{2}. Multiply \frac{v_{3}}{200} times \frac{5}{5}.
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000} and \frac{5v_{3}}{1000} have the same denominator, add them by adding their numerators.
\frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000}+\frac{5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1000 and 400 is 2000. Multiply \frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000} times \frac{2}{2}. Multiply \frac{v_{3}-v_{2}}{400} times \frac{5}{5}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000} and \frac{5\left(v_{3}-v_{2}\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right).
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Combine like terms in 20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2000 and 500 is 2000. Multiply \frac{v_{3}-\left(v_{2}+128\right)}{500} times \frac{4}{4}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
Since \frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000} and \frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512}{2000}
Do the multiplications in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right).
\frac{20r_{1}+8v_{1}-17v_{2}+19v_{3}-512}{2000}
Combine like terms in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512.
\frac{5r_{1}}{500}+\frac{2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 100 and 250 is 500. Multiply \frac{r_{1}}{100} times \frac{5}{5}. Multiply \frac{v_{1}-v_{2}}{250} times \frac{2}{2}.
\frac{5r_{1}+2\left(v_{1}-v_{2}\right)}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{5r_{1}}{500} and \frac{2\left(v_{1}-v_{2}\right)}{500} have the same denominator, add them by adding their numerators.
\frac{5r_{1}+2v_{1}-2v_{2}}{500}+\frac{v_{3}}{200}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 5r_{1}+2\left(v_{1}-v_{2}\right).
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000}+\frac{5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 500 and 200 is 1000. Multiply \frac{5r_{1}+2v_{1}-2v_{2}}{500} times \frac{2}{2}. Multiply \frac{v_{3}}{200} times \frac{5}{5}.
\frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(5r_{1}+2v_{1}-2v_{2}\right)}{1000} and \frac{5v_{3}}{1000} have the same denominator, add them by adding their numerators.
\frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000}+\frac{v_{3}-v_{2}}{400}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(5r_{1}+2v_{1}-2v_{2}\right)+5v_{3}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000}+\frac{5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1000 and 400 is 2000. Multiply \frac{10r_{1}+4v_{1}-4v_{2}+5v_{3}}{1000} times \frac{2}{2}. Multiply \frac{v_{3}-v_{2}}{400} times \frac{5}{5}.
\frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right)}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Since \frac{2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)}{2000} and \frac{5\left(v_{3}-v_{2}\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Do the multiplications in 2\left(10r_{1}+4v_{1}-4v_{2}+5v_{3}\right)+5\left(v_{3}-v_{2}\right).
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{v_{3}-\left(v_{2}+128\right)}{500}
Combine like terms in 20r_{1}+8v_{1}-8v_{2}+10v_{3}+5v_{3}-5v_{2}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000}+\frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2000 and 500 is 2000. Multiply \frac{v_{3}-\left(v_{2}+128\right)}{500} times \frac{4}{4}.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000}
Since \frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}}{2000} and \frac{4\left(v_{3}-\left(v_{2}+128\right)\right)}{2000} have the same denominator, add them by adding their numerators.
\frac{20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512}{2000}
Do the multiplications in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4\left(v_{3}-\left(v_{2}+128\right)\right).
\frac{20r_{1}+8v_{1}-17v_{2}+19v_{3}-512}{2000}
Combine like terms in 20r_{1}+8v_{1}-13v_{2}+15v_{3}+4v_{3}-4v_{2}-512.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}