Solve for r
r=\frac{4h}{3}+\frac{32e}{3h}
h\neq 0
Solve for h (complex solution)
h=\frac{\sqrt{9r^{2}-512e}+3r}{8}
h=\frac{-\sqrt{9r^{2}-512e}+3r}{8}
Solve for h
h=\frac{\sqrt{9r^{2}-512e}+3r}{8}
h=\frac{-\sqrt{9r^{2}-512e}+3r}{8}\text{, }|r|\geq \frac{16\sqrt{2e}}{3}
Share
Copied to clipboard
3r=4\left(h+8\times \frac{e}{h}\right)
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3r=4\left(h+\frac{8e}{h}\right)
Express 8\times \frac{e}{h} as a single fraction.
3r=4\left(\frac{hh}{h}+\frac{8e}{h}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply h times \frac{h}{h}.
3r=4\times \frac{hh+8e}{h}
Since \frac{hh}{h} and \frac{8e}{h} have the same denominator, add them by adding their numerators.
3r=4\times \frac{h^{2}+8e}{h}
Do the multiplications in hh+8e.
3r=\frac{4\left(h^{2}+8e\right)}{h}
Express 4\times \frac{h^{2}+8e}{h} as a single fraction.
3r=\frac{4h^{2}+32e}{h}
Use the distributive property to multiply 4 by h^{2}+8e.
3rh=4h^{2}+32e
Multiply both sides of the equation by h.
3hr=4h^{2}+32e
The equation is in standard form.
\frac{3hr}{3h}=\frac{4h^{2}+32e}{3h}
Divide both sides by 3h.
r=\frac{4h^{2}+32e}{3h}
Dividing by 3h undoes the multiplication by 3h.
r=\frac{4h}{3}+\frac{32e}{3h}
Divide 4h^{2}+32e by 3h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}