Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r=\frac{1}{2}\times 2^{\frac{1}{2}}\left(10-r\right)
Multiply both sides of the equation by 10.
r=\frac{1}{2}\times 2^{\frac{1}{2}}\times 10+\frac{1}{2}\times 2^{\frac{1}{2}}\left(-1\right)r
Use the distributive property to multiply \frac{1}{2}\times 2^{\frac{1}{2}} by 10-r.
r=\frac{10}{2}\times 2^{\frac{1}{2}}+\frac{1}{2}\times 2^{\frac{1}{2}}\left(-1\right)r
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
r=5\times 2^{\frac{1}{2}}+\frac{1}{2}\times 2^{\frac{1}{2}}\left(-1\right)r
Divide 10 by 2 to get 5.
r=5\times 2^{\frac{1}{2}}-\frac{1}{2}\times 2^{\frac{1}{2}}r
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
r+\frac{1}{2}\times 2^{\frac{1}{2}}r=5\times 2^{\frac{1}{2}}
Add \frac{1}{2}\times 2^{\frac{1}{2}}r to both sides.
\frac{1}{2}\sqrt{2}r+r=5\sqrt{2}
Reorder the terms.
\left(\frac{1}{2}\sqrt{2}+1\right)r=5\sqrt{2}
Combine all terms containing r.
\left(\frac{\sqrt{2}}{2}+1\right)r=5\sqrt{2}
The equation is in standard form.
\frac{\left(\frac{\sqrt{2}}{2}+1\right)r}{\frac{\sqrt{2}}{2}+1}=\frac{5\sqrt{2}}{\frac{\sqrt{2}}{2}+1}
Divide both sides by \frac{1}{2}\sqrt{2}+1.
r=\frac{5\sqrt{2}}{\frac{\sqrt{2}}{2}+1}
Dividing by \frac{1}{2}\sqrt{2}+1 undoes the multiplication by \frac{1}{2}\sqrt{2}+1.
r=10\sqrt{2}-10
Divide 5\sqrt{2} by \frac{1}{2}\sqrt{2}+1.