Solve for r
r=10\left(\sqrt{2}-1\right)\approx 4.142135624
Share
Copied to clipboard
r=\frac{1}{2}\times 2^{\frac{1}{2}}\left(10-r\right)
Multiply both sides of the equation by 10.
r=\frac{1}{2}\times 2^{\frac{1}{2}}\times 10+\frac{1}{2}\times 2^{\frac{1}{2}}\left(-1\right)r
Use the distributive property to multiply \frac{1}{2}\times 2^{\frac{1}{2}} by 10-r.
r=\frac{10}{2}\times 2^{\frac{1}{2}}+\frac{1}{2}\times 2^{\frac{1}{2}}\left(-1\right)r
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
r=5\times 2^{\frac{1}{2}}+\frac{1}{2}\times 2^{\frac{1}{2}}\left(-1\right)r
Divide 10 by 2 to get 5.
r=5\times 2^{\frac{1}{2}}-\frac{1}{2}\times 2^{\frac{1}{2}}r
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
r+\frac{1}{2}\times 2^{\frac{1}{2}}r=5\times 2^{\frac{1}{2}}
Add \frac{1}{2}\times 2^{\frac{1}{2}}r to both sides.
\frac{1}{2}\sqrt{2}r+r=5\sqrt{2}
Reorder the terms.
\left(\frac{1}{2}\sqrt{2}+1\right)r=5\sqrt{2}
Combine all terms containing r.
\left(\frac{\sqrt{2}}{2}+1\right)r=5\sqrt{2}
The equation is in standard form.
\frac{\left(\frac{\sqrt{2}}{2}+1\right)r}{\frac{\sqrt{2}}{2}+1}=\frac{5\sqrt{2}}{\frac{\sqrt{2}}{2}+1}
Divide both sides by \frac{1}{2}\sqrt{2}+1.
r=\frac{5\sqrt{2}}{\frac{\sqrt{2}}{2}+1}
Dividing by \frac{1}{2}\sqrt{2}+1 undoes the multiplication by \frac{1}{2}\sqrt{2}+1.
r=10\sqrt{2}-10
Divide 5\sqrt{2} by \frac{1}{2}\sqrt{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}