Evaluate
\frac{r^{81}}{\left(st\right)^{5}}
Differentiate w.r.t. r
\frac{81r^{80}}{\left(st\right)^{5}}
Share
Copied to clipboard
\frac{r^{9}s^{2}t^{0}}{r^{-72}s^{3}t^{0}s^{4}t^{5}}
To multiply powers of the same base, add their exponents. Add -84 and 12 to get -72.
\frac{r^{9}s^{2}t^{0}}{r^{-72}s^{7}t^{0}t^{5}}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
\frac{r^{9}s^{2}t^{0}}{r^{-72}s^{7}t^{5}}
To multiply powers of the same base, add their exponents. Add 0 and 5 to get 5.
\frac{t^{0}r^{9}}{r^{-72}s^{5}t^{5}}
Cancel out s^{2} in both numerator and denominator.
\frac{t^{0}r^{81}}{s^{5}t^{5}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{r^{81}}{s^{5}t^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{t^{0}s^{2}}{t^{0}s^{3}s^{4}t^{5}r^{12}}r^{9-\left(-84\right)})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{r^{12}\left(st\right)^{5}}r^{93})
Do the arithmetic.
93\times \frac{1}{r^{12}\left(st\right)^{5}}r^{93-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{93}{r^{12}\left(st\right)^{5}}r^{92}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}