Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)}}{\frac{r^{2}-3r-4}{r^{2}-16}}
Multiply \frac{r^{2}-r}{r^{2}-2r-3} times \frac{r^{2}+2r+1}{r^{2}+4r} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)}}{\frac{\left(r-4\right)\left(r+1\right)}{\left(r-4\right)\left(r+4\right)}}
Factor the expressions that are not already factored in \frac{r^{2}-3r-4}{r^{2}-16}.
\frac{\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)}}{\frac{r+1}{r+4}}
Cancel out r-4 in both numerator and denominator.
\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)\left(r+4\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)\left(r+1\right)}
Divide \frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)} by \frac{r+1}{r+4} by multiplying \frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)} by the reciprocal of \frac{r+1}{r+4}.
\frac{r\left(r-1\right)\left(r+4\right)\left(r+1\right)^{2}}{r\left(r-3\right)\left(r+4\right)\left(r+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{r-1}{r-3}
Cancel out r\left(r+4\right)\left(r+1\right)^{2} in both numerator and denominator.
\frac{\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)}}{\frac{r^{2}-3r-4}{r^{2}-16}}
Multiply \frac{r^{2}-r}{r^{2}-2r-3} times \frac{r^{2}+2r+1}{r^{2}+4r} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)}}{\frac{\left(r-4\right)\left(r+1\right)}{\left(r-4\right)\left(r+4\right)}}
Factor the expressions that are not already factored in \frac{r^{2}-3r-4}{r^{2}-16}.
\frac{\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)}}{\frac{r+1}{r+4}}
Cancel out r-4 in both numerator and denominator.
\frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)\left(r+4\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)\left(r+1\right)}
Divide \frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)} by \frac{r+1}{r+4} by multiplying \frac{\left(r^{2}-r\right)\left(r^{2}+2r+1\right)}{\left(r^{2}-2r-3\right)\left(r^{2}+4r\right)} by the reciprocal of \frac{r+1}{r+4}.
\frac{r\left(r-1\right)\left(r+4\right)\left(r+1\right)^{2}}{r\left(r-3\right)\left(r+4\right)\left(r+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{r-1}{r-3}
Cancel out r\left(r+4\right)\left(r+1\right)^{2} in both numerator and denominator.