Solve for r
r=-1
Share
Copied to clipboard
7\left(r+6\right)=5\left(r+8\right)
Multiply both sides of the equation by 35, the least common multiple of 5,7.
7r+42=5\left(r+8\right)
Use the distributive property to multiply 7 by r+6.
7r+42=5r+40
Use the distributive property to multiply 5 by r+8.
7r+42-5r=40
Subtract 5r from both sides.
2r+42=40
Combine 7r and -5r to get 2r.
2r=40-42
Subtract 42 from both sides.
2r=-2
Subtract 42 from 40 to get -2.
r=\frac{-2}{2}
Divide both sides by 2.
r=-1
Divide -2 by 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}