Solve for r
r = -\frac{45}{7} = -6\frac{3}{7} \approx -6.428571429
Share
Copied to clipboard
9\left(r+5\right)=2r
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9r, the least common multiple of r,9.
9r+45=2r
Use the distributive property to multiply 9 by r+5.
9r+45-2r=0
Subtract 2r from both sides.
7r+45=0
Combine 9r and -2r to get 7r.
7r=-45
Subtract 45 from both sides. Anything subtracted from zero gives its negation.
r=\frac{-45}{7}
Divide both sides by 7.
r=-\frac{45}{7}
Fraction \frac{-45}{7} can be rewritten as -\frac{45}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}