Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{r+3s}{s+r}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Factor s^{2}-r^{2}.
\frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s+r and \left(r+s\right)\left(-r+s\right) is \left(r+s\right)\left(-r+s\right). Multiply \frac{r+3s}{s+r} times \frac{-r+s}{-r+s}.
\frac{\left(r+3s\right)\left(-r+s\right)-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Since \frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)} and \frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-r^{2}+rs-3sr+3s^{2}-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Do the multiplications in \left(r+3s\right)\left(-r+s\right)-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Combine like terms in -r^{2}+rs-3sr+3s^{2}-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(-r+s\right) and s-r is \left(r+s\right)\left(-r+s\right). Multiply \frac{r}{s-r} times \frac{r+s}{r+s}.
\frac{-r^{2}-2rs+r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
Since \frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)} and \frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)} have the same denominator, add them by adding their numerators.
\frac{-r^{2}-2rs+r^{2}+rs}{\left(r+s\right)\left(-r+s\right)}
Do the multiplications in -r^{2}-2rs+r\left(r+s\right).
\frac{-rs}{\left(r+s\right)\left(-r+s\right)}
Combine like terms in -r^{2}-2rs+r^{2}+rs.
\frac{-rs}{-r^{2}+s^{2}}
Expand \left(r+s\right)\left(-r+s\right).
\frac{r+3s}{s+r}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Factor s^{2}-r^{2}.
\frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s+r and \left(r+s\right)\left(-r+s\right) is \left(r+s\right)\left(-r+s\right). Multiply \frac{r+3s}{s+r} times \frac{-r+s}{-r+s}.
\frac{\left(r+3s\right)\left(-r+s\right)-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Since \frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)} and \frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-r^{2}+rs-3sr+3s^{2}-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Do the multiplications in \left(r+3s\right)\left(-r+s\right)-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Combine like terms in -r^{2}+rs-3sr+3s^{2}-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(-r+s\right) and s-r is \left(r+s\right)\left(-r+s\right). Multiply \frac{r}{s-r} times \frac{r+s}{r+s}.
\frac{-r^{2}-2rs+r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
Since \frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)} and \frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)} have the same denominator, add them by adding their numerators.
\frac{-r^{2}-2rs+r^{2}+rs}{\left(r+s\right)\left(-r+s\right)}
Do the multiplications in -r^{2}-2rs+r\left(r+s\right).
\frac{-rs}{\left(r+s\right)\left(-r+s\right)}
Combine like terms in -r^{2}-2rs+r^{2}+rs.
\frac{-rs}{-r^{2}+s^{2}}
Expand \left(r+s\right)\left(-r+s\right).