Evaluate
-\frac{rs}{s^{2}-r^{2}}
Expand
-\frac{rs}{s^{2}-r^{2}}
Share
Copied to clipboard
\frac{r+3s}{s+r}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Factor s^{2}-r^{2}.
\frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s+r and \left(r+s\right)\left(-r+s\right) is \left(r+s\right)\left(-r+s\right). Multiply \frac{r+3s}{s+r} times \frac{-r+s}{-r+s}.
\frac{\left(r+3s\right)\left(-r+s\right)-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Since \frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)} and \frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-r^{2}+rs-3sr+3s^{2}-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Do the multiplications in \left(r+3s\right)\left(-r+s\right)-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Combine like terms in -r^{2}+rs-3sr+3s^{2}-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(-r+s\right) and s-r is \left(r+s\right)\left(-r+s\right). Multiply \frac{r}{s-r} times \frac{r+s}{r+s}.
\frac{-r^{2}-2rs+r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
Since \frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)} and \frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)} have the same denominator, add them by adding their numerators.
\frac{-r^{2}-2rs+r^{2}+rs}{\left(r+s\right)\left(-r+s\right)}
Do the multiplications in -r^{2}-2rs+r\left(r+s\right).
\frac{-rs}{\left(r+s\right)\left(-r+s\right)}
Combine like terms in -r^{2}-2rs+r^{2}+rs.
\frac{-rs}{-r^{2}+s^{2}}
Expand \left(r+s\right)\left(-r+s\right).
\frac{r+3s}{s+r}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Factor s^{2}-r^{2}.
\frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)}-\frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s+r and \left(r+s\right)\left(-r+s\right) is \left(r+s\right)\left(-r+s\right). Multiply \frac{r+3s}{s+r} times \frac{-r+s}{-r+s}.
\frac{\left(r+3s\right)\left(-r+s\right)-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Since \frac{\left(r+3s\right)\left(-r+s\right)}{\left(r+s\right)\left(-r+s\right)} and \frac{3s^{2}}{\left(r+s\right)\left(-r+s\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-r^{2}+rs-3sr+3s^{2}-3s^{2}}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Do the multiplications in \left(r+3s\right)\left(-r+s\right)-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r}{s-r}
Combine like terms in -r^{2}+rs-3sr+3s^{2}-3s^{2}.
\frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)}+\frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(-r+s\right) and s-r is \left(r+s\right)\left(-r+s\right). Multiply \frac{r}{s-r} times \frac{r+s}{r+s}.
\frac{-r^{2}-2rs+r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)}
Since \frac{-r^{2}-2rs}{\left(r+s\right)\left(-r+s\right)} and \frac{r\left(r+s\right)}{\left(r+s\right)\left(-r+s\right)} have the same denominator, add them by adding their numerators.
\frac{-r^{2}-2rs+r^{2}+rs}{\left(r+s\right)\left(-r+s\right)}
Do the multiplications in -r^{2}-2rs+r\left(r+s\right).
\frac{-rs}{\left(r+s\right)\left(-r+s\right)}
Combine like terms in -r^{2}-2rs+r^{2}+rs.
\frac{-rs}{-r^{2}+s^{2}}
Expand \left(r+s\right)\left(-r+s\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}