Evaluate
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Expand
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Quiz
Polynomial
5 problems similar to:
\frac { r + 2 } { r ( r + 3 ) } - \frac { r - 1 } { r ( r + 2 ) }
Share
Copied to clipboard
\frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)}-\frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r\left(r+3\right) and r\left(r+2\right) is r\left(r+2\right)\left(r+3\right). Multiply \frac{r+2}{r\left(r+3\right)} times \frac{r+2}{r+2}. Multiply \frac{r-1}{r\left(r+2\right)} times \frac{r+3}{r+3}.
\frac{\left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Since \frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)} and \frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{r^{2}+2r+2r+4-r^{2}-3r+r+3}{r\left(r+2\right)\left(r+3\right)}
Do the multiplications in \left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right).
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Combine like terms in r^{2}+2r+2r+4-r^{2}-3r+r+3.
\frac{2r+7}{r^{3}+5r^{2}+6r}
Expand r\left(r+2\right)\left(r+3\right).
\frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)}-\frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r\left(r+3\right) and r\left(r+2\right) is r\left(r+2\right)\left(r+3\right). Multiply \frac{r+2}{r\left(r+3\right)} times \frac{r+2}{r+2}. Multiply \frac{r-1}{r\left(r+2\right)} times \frac{r+3}{r+3}.
\frac{\left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Since \frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)} and \frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{r^{2}+2r+2r+4-r^{2}-3r+r+3}{r\left(r+2\right)\left(r+3\right)}
Do the multiplications in \left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right).
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Combine like terms in r^{2}+2r+2r+4-r^{2}-3r+r+3.
\frac{2r+7}{r^{3}+5r^{2}+6r}
Expand r\left(r+2\right)\left(r+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}