Evaluate
\frac{t^{6}}{s^{4}q^{5}r^{7}}
Differentiate w.r.t. q
-\frac{5\times \left(\frac{t}{q}\right)^{6}}{s^{4}r^{7}}
Share
Copied to clipboard
\frac{qr^{2}s^{8}t^{3}}{q^{6}r^{0}s^{6}t^{-3}r^{9}s^{6}t^{0}}
To multiply powers of the same base, add their exponents. Add 5 and 1 to get 6.
\frac{qr^{2}s^{8}t^{3}}{q^{6}r^{9}s^{6}t^{-3}s^{6}t^{0}}
To multiply powers of the same base, add their exponents. Add 0 and 9 to get 9.
\frac{qr^{2}s^{8}t^{3}}{q^{6}r^{9}s^{12}t^{-3}t^{0}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{qr^{2}s^{8}t^{3}}{q^{6}r^{9}s^{12}t^{-3}}
To multiply powers of the same base, add their exponents. Add -3 and 0 to get -3.
\frac{t^{3}}{t^{-3}s^{4}q^{5}r^{7}}
Cancel out qr^{2}s^{8} in both numerator and denominator.
\frac{t^{6}}{s^{4}q^{5}r^{7}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}q}(\frac{r^{2}t^{3}s^{8}t^{3}}{qr^{0}t^{0}s^{6}s^{6}r^{9}}q^{1-5})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}q}(\frac{t^{6}}{qs^{4}r^{7}}q^{-4})
Do the arithmetic.
-4\times \frac{t^{6}}{qs^{4}r^{7}}q^{-4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{4t^{6}}{qs^{4}r^{7}}\right)q^{-5}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}