Solve for q
q=\frac{n^{2}}{\Delta }
n\neq 0\text{ and }\Delta \neq 0
Solve for n
n=\sqrt{q\Delta }
n=-\sqrt{q\Delta }\text{, }\left(q<0\text{ and }\Delta <0\right)\text{ or }\left(\Delta >0\text{ and }q>0\right)
Share
Copied to clipboard
\Delta q=n^{2}
Multiply both sides of the equation by \Delta n^{2}, the least common multiple of n^{2},\Delta .
\frac{\Delta q}{\Delta }=\frac{n^{2}}{\Delta }
Divide both sides by \Delta .
q=\frac{n^{2}}{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}