Solve for p_1 (complex solution)
\left\{\begin{matrix}p_{1}=\frac{p_{2}t_{1}v_{2}}{t_{2}v_{1}}\text{, }&t_{2}\neq 0\text{ and }v_{1}\neq 0\text{ and }t_{1}\neq 0\\p_{1}\in \mathrm{C}\text{, }&\left(v_{2}=0\text{ or }p_{2}=0\right)\text{ and }v_{1}=0\text{ and }t_{2}\neq 0\text{ and }t_{1}\neq 0\end{matrix}\right.
Solve for p_2 (complex solution)
\left\{\begin{matrix}p_{2}=\frac{p_{1}t_{2}v_{1}}{t_{1}v_{2}}\text{, }&t_{1}\neq 0\text{ and }v_{2}\neq 0\text{ and }t_{2}\neq 0\\p_{2}\in \mathrm{C}\text{, }&\left(v_{1}=0\text{ or }p_{1}=0\right)\text{ and }v_{2}=0\text{ and }t_{1}\neq 0\text{ and }t_{2}\neq 0\end{matrix}\right.
Solve for p_1
\left\{\begin{matrix}p_{1}=\frac{p_{2}t_{1}v_{2}}{t_{2}v_{1}}\text{, }&t_{2}\neq 0\text{ and }v_{1}\neq 0\text{ and }t_{1}\neq 0\\p_{1}\in \mathrm{R}\text{, }&\left(v_{2}=0\text{ or }p_{2}=0\right)\text{ and }v_{1}=0\text{ and }t_{2}\neq 0\text{ and }t_{1}\neq 0\end{matrix}\right.
Solve for p_2
\left\{\begin{matrix}p_{2}=\frac{p_{1}t_{2}v_{1}}{t_{1}v_{2}}\text{, }&t_{1}\neq 0\text{ and }v_{2}\neq 0\text{ and }t_{2}\neq 0\\p_{2}\in \mathrm{R}\text{, }&\left(v_{1}=0\text{ or }p_{1}=0\right)\text{ and }v_{2}=0\text{ and }t_{1}\neq 0\text{ and }t_{2}\neq 0\end{matrix}\right.
Share
Copied to clipboard
t_{2}p_{1}v_{1}=t_{1}p_{2}v_{2}
Multiply both sides of the equation by t_{1}t_{2}, the least common multiple of t_{1},t_{2}.
p_{1}t_{2}v_{1}=p_{2}t_{1}v_{2}
Reorder the terms.
t_{2}v_{1}p_{1}=p_{2}t_{1}v_{2}
The equation is in standard form.
\frac{t_{2}v_{1}p_{1}}{t_{2}v_{1}}=\frac{p_{2}t_{1}v_{2}}{t_{2}v_{1}}
Divide both sides by t_{2}v_{1}.
p_{1}=\frac{p_{2}t_{1}v_{2}}{t_{2}v_{1}}
Dividing by t_{2}v_{1} undoes the multiplication by t_{2}v_{1}.
t_{2}p_{1}v_{1}=t_{1}p_{2}v_{2}
Multiply both sides of the equation by t_{1}t_{2}, the least common multiple of t_{1},t_{2}.
t_{1}p_{2}v_{2}=t_{2}p_{1}v_{1}
Swap sides so that all variable terms are on the left hand side.
t_{1}v_{2}p_{2}=p_{1}t_{2}v_{1}
The equation is in standard form.
\frac{t_{1}v_{2}p_{2}}{t_{1}v_{2}}=\frac{p_{1}t_{2}v_{1}}{t_{1}v_{2}}
Divide both sides by t_{1}v_{2}.
p_{2}=\frac{p_{1}t_{2}v_{1}}{t_{1}v_{2}}
Dividing by t_{1}v_{2} undoes the multiplication by t_{1}v_{2}.
t_{2}p_{1}v_{1}=t_{1}p_{2}v_{2}
Multiply both sides of the equation by t_{1}t_{2}, the least common multiple of t_{1},t_{2}.
p_{1}t_{2}v_{1}=p_{2}t_{1}v_{2}
Reorder the terms.
t_{2}v_{1}p_{1}=p_{2}t_{1}v_{2}
The equation is in standard form.
\frac{t_{2}v_{1}p_{1}}{t_{2}v_{1}}=\frac{p_{2}t_{1}v_{2}}{t_{2}v_{1}}
Divide both sides by t_{2}v_{1}.
p_{1}=\frac{p_{2}t_{1}v_{2}}{t_{2}v_{1}}
Dividing by t_{2}v_{1} undoes the multiplication by t_{2}v_{1}.
t_{2}p_{1}v_{1}=t_{1}p_{2}v_{2}
Multiply both sides of the equation by t_{1}t_{2}, the least common multiple of t_{1},t_{2}.
t_{1}p_{2}v_{2}=t_{2}p_{1}v_{1}
Swap sides so that all variable terms are on the left hand side.
t_{1}v_{2}p_{2}=p_{1}t_{2}v_{1}
The equation is in standard form.
\frac{t_{1}v_{2}p_{2}}{t_{1}v_{2}}=\frac{p_{1}t_{2}v_{1}}{t_{1}v_{2}}
Divide both sides by t_{1}v_{2}.
p_{2}=\frac{p_{1}t_{2}v_{1}}{t_{1}v_{2}}
Dividing by t_{1}v_{2} undoes the multiplication by t_{1}v_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}