Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)}}{\frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}}
Multiply \frac{p-q}{p+q} times \frac{p^{2}-q^{2}}{2p-q} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)\left(4p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)\left(p^{2}-2pq+q^{2}\right)}
Divide \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} by \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}} by multiplying \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} by the reciprocal of \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}.
\frac{\left(p+q\right)\left(2p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}{\left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}
Factor the expressions that are not already factored.
2p+q
Cancel out \left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2} in both numerator and denominator.
\frac{\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)}}{\frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}}
Multiply \frac{p-q}{p+q} times \frac{p^{2}-q^{2}}{2p-q} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)\left(4p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)\left(p^{2}-2pq+q^{2}\right)}
Divide \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} by \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}} by multiplying \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} by the reciprocal of \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}.
\frac{\left(p+q\right)\left(2p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}{\left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}
Factor the expressions that are not already factored.
2p+q
Cancel out \left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2} in both numerator and denominator.