Solve for p
p = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
Share
Copied to clipboard
\left(p-9\right)\left(p-4\right)=\left(p-8\right)\left(p+1\right)
Variable p cannot be equal to any of the values 8,9 since division by zero is not defined. Multiply both sides of the equation by \left(p-9\right)\left(p-8\right), the least common multiple of p-8,p-9.
p^{2}-13p+36=\left(p-8\right)\left(p+1\right)
Use the distributive property to multiply p-9 by p-4 and combine like terms.
p^{2}-13p+36=p^{2}-7p-8
Use the distributive property to multiply p-8 by p+1 and combine like terms.
p^{2}-13p+36-p^{2}=-7p-8
Subtract p^{2} from both sides.
-13p+36=-7p-8
Combine p^{2} and -p^{2} to get 0.
-13p+36+7p=-8
Add 7p to both sides.
-6p+36=-8
Combine -13p and 7p to get -6p.
-6p=-8-36
Subtract 36 from both sides.
-6p=-44
Subtract 36 from -8 to get -44.
p=\frac{-44}{-6}
Divide both sides by -6.
p=\frac{22}{3}
Reduce the fraction \frac{-44}{-6} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}