Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{p\left(p+1\right)}{p+1}-\frac{2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply p times \frac{p+1}{p+1}.
\frac{\frac{p\left(p+1\right)-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Since \frac{p\left(p+1\right)}{p+1} and \frac{2}{p+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Do the multiplications in p\left(p+1\right)-2.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
Factor p^{2}+4p+3.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)-\left(4p+7\right)}{\left(p+1\right)\left(p+3\right)}}
Since \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)} and \frac{4p+7}{\left(p+1\right)\left(p+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}+3p+3+p-4p-7}{\left(p+1\right)\left(p+3\right)}}
Do the multiplications in \left(p+1\right)\left(p+3\right)-\left(4p+7\right).
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}}
Combine like terms in p^{2}+3p+3+p-4p-7.
\frac{\left(p^{2}+p-2\right)\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p^{2}-4\right)}
Divide \frac{p^{2}+p-2}{p+1} by \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)} by multiplying \frac{p^{2}+p-2}{p+1} by the reciprocal of \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}.
\frac{\left(p+3\right)\left(p^{2}+p-2\right)}{p^{2}-4}
Cancel out p+1 in both numerator and denominator.
\frac{\left(p-1\right)\left(p+2\right)\left(p+3\right)}{\left(p-2\right)\left(p+2\right)}
Factor the expressions that are not already factored.
\frac{\left(p-1\right)\left(p+3\right)}{p-2}
Cancel out p+2 in both numerator and denominator.
\frac{p^{2}+2p-3}{p-2}
Expand the expression.
\frac{\frac{p\left(p+1\right)}{p+1}-\frac{2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply p times \frac{p+1}{p+1}.
\frac{\frac{p\left(p+1\right)-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Since \frac{p\left(p+1\right)}{p+1} and \frac{2}{p+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Do the multiplications in p\left(p+1\right)-2.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
Factor p^{2}+4p+3.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)-\left(4p+7\right)}{\left(p+1\right)\left(p+3\right)}}
Since \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)} and \frac{4p+7}{\left(p+1\right)\left(p+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}+3p+3+p-4p-7}{\left(p+1\right)\left(p+3\right)}}
Do the multiplications in \left(p+1\right)\left(p+3\right)-\left(4p+7\right).
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}}
Combine like terms in p^{2}+3p+3+p-4p-7.
\frac{\left(p^{2}+p-2\right)\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p^{2}-4\right)}
Divide \frac{p^{2}+p-2}{p+1} by \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)} by multiplying \frac{p^{2}+p-2}{p+1} by the reciprocal of \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}.
\frac{\left(p+3\right)\left(p^{2}+p-2\right)}{p^{2}-4}
Cancel out p+1 in both numerator and denominator.
\frac{\left(p-1\right)\left(p+2\right)\left(p+3\right)}{\left(p-2\right)\left(p+2\right)}
Factor the expressions that are not already factored.
\frac{\left(p-1\right)\left(p+3\right)}{p-2}
Cancel out p+2 in both numerator and denominator.
\frac{p^{2}+2p-3}{p-2}
Expand the expression.