Evaluate
\frac{\left(p-1\right)\left(p+3\right)}{p-2}
Expand
\frac{p^{2}+2p-3}{p-2}
Share
Copied to clipboard
\frac{\frac{p\left(p+1\right)}{p+1}-\frac{2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply p times \frac{p+1}{p+1}.
\frac{\frac{p\left(p+1\right)-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Since \frac{p\left(p+1\right)}{p+1} and \frac{2}{p+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Do the multiplications in p\left(p+1\right)-2.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
Factor p^{2}+4p+3.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)-\left(4p+7\right)}{\left(p+1\right)\left(p+3\right)}}
Since \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)} and \frac{4p+7}{\left(p+1\right)\left(p+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}+3p+3+p-4p-7}{\left(p+1\right)\left(p+3\right)}}
Do the multiplications in \left(p+1\right)\left(p+3\right)-\left(4p+7\right).
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}}
Combine like terms in p^{2}+3p+3+p-4p-7.
\frac{\left(p^{2}+p-2\right)\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p^{2}-4\right)}
Divide \frac{p^{2}+p-2}{p+1} by \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)} by multiplying \frac{p^{2}+p-2}{p+1} by the reciprocal of \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}.
\frac{\left(p+3\right)\left(p^{2}+p-2\right)}{p^{2}-4}
Cancel out p+1 in both numerator and denominator.
\frac{\left(p-1\right)\left(p+2\right)\left(p+3\right)}{\left(p-2\right)\left(p+2\right)}
Factor the expressions that are not already factored.
\frac{\left(p-1\right)\left(p+3\right)}{p-2}
Cancel out p+2 in both numerator and denominator.
\frac{p^{2}+2p-3}{p-2}
Expand the expression.
\frac{\frac{p\left(p+1\right)}{p+1}-\frac{2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply p times \frac{p+1}{p+1}.
\frac{\frac{p\left(p+1\right)-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Since \frac{p\left(p+1\right)}{p+1} and \frac{2}{p+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{p^{2}+4p+3}}
Do the multiplications in p\left(p+1\right)-2.
\frac{\frac{p^{2}+p-2}{p+1}}{1-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
Factor p^{2}+4p+3.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}-\frac{4p+7}{\left(p+1\right)\left(p+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)}.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{\left(p+1\right)\left(p+3\right)-\left(4p+7\right)}{\left(p+1\right)\left(p+3\right)}}
Since \frac{\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p+3\right)} and \frac{4p+7}{\left(p+1\right)\left(p+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}+3p+3+p-4p-7}{\left(p+1\right)\left(p+3\right)}}
Do the multiplications in \left(p+1\right)\left(p+3\right)-\left(4p+7\right).
\frac{\frac{p^{2}+p-2}{p+1}}{\frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}}
Combine like terms in p^{2}+3p+3+p-4p-7.
\frac{\left(p^{2}+p-2\right)\left(p+1\right)\left(p+3\right)}{\left(p+1\right)\left(p^{2}-4\right)}
Divide \frac{p^{2}+p-2}{p+1} by \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)} by multiplying \frac{p^{2}+p-2}{p+1} by the reciprocal of \frac{p^{2}-4}{\left(p+1\right)\left(p+3\right)}.
\frac{\left(p+3\right)\left(p^{2}+p-2\right)}{p^{2}-4}
Cancel out p+1 in both numerator and denominator.
\frac{\left(p-1\right)\left(p+2\right)\left(p+3\right)}{\left(p-2\right)\left(p+2\right)}
Factor the expressions that are not already factored.
\frac{\left(p-1\right)\left(p+3\right)}{p-2}
Cancel out p+2 in both numerator and denominator.
\frac{p^{2}+2p-3}{p-2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}