Solve for R
R=\frac{p}{3}
p\neq 0\text{ and }x\neq 0
Solve for p
p=3R
R\neq 0\text{ and }x\neq 0
Graph
Share
Copied to clipboard
px=3Rx
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Rx.
3Rx=px
Swap sides so that all variable terms are on the left hand side.
3xR=px
The equation is in standard form.
\frac{3xR}{3x}=\frac{px}{3x}
Divide both sides by 3x.
R=\frac{px}{3x}
Dividing by 3x undoes the multiplication by 3x.
R=\frac{p}{3}
Divide px by 3x.
R=\frac{p}{3}\text{, }R\neq 0
Variable R cannot be equal to 0.
px=3Rx
Multiply both sides of the equation by Rx.
xp=3Rx
The equation is in standard form.
\frac{xp}{x}=\frac{3Rx}{x}
Divide both sides by x.
p=\frac{3Rx}{x}
Dividing by x undoes the multiplication by x.
p=3R
Divide 3Rx by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}