Solve for p
p=r\left(x+q\right)
x\neq -q
Solve for q
\left\{\begin{matrix}q=-x+\frac{p}{r}\text{, }&p\neq 0\text{ and }r\neq 0\\q\neq -x\text{, }&r=0\text{ and }p=0\end{matrix}\right.
Share
Copied to clipboard
\frac{1}{x+q}p=r
The equation is in standard form.
\frac{\frac{1}{x+q}p\left(x+q\right)}{1}=\frac{r\left(x+q\right)}{1}
Divide both sides by \left(x+q\right)^{-1}.
p=\frac{r\left(x+q\right)}{1}
Dividing by \left(x+q\right)^{-1} undoes the multiplication by \left(x+q\right)^{-1}.
p=r\left(x+q\right)
Divide r by \left(x+q\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}