Evaluate
-\frac{4p}{p^{2}-4}
Factor
-\frac{4p}{p^{2}-4}
Share
Copied to clipboard
\frac{p\left(p-2\right)}{\left(p-2\right)\left(p+2\right)}-\frac{p\left(p+2\right)}{\left(p-2\right)\left(p+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p+2 and p-2 is \left(p-2\right)\left(p+2\right). Multiply \frac{p}{p+2} times \frac{p-2}{p-2}. Multiply \frac{p}{p-2} times \frac{p+2}{p+2}.
\frac{p\left(p-2\right)-p\left(p+2\right)}{\left(p-2\right)\left(p+2\right)}
Since \frac{p\left(p-2\right)}{\left(p-2\right)\left(p+2\right)} and \frac{p\left(p+2\right)}{\left(p-2\right)\left(p+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}-2p-p^{2}-2p}{\left(p-2\right)\left(p+2\right)}
Do the multiplications in p\left(p-2\right)-p\left(p+2\right).
\frac{-4p}{\left(p-2\right)\left(p+2\right)}
Combine like terms in p^{2}-2p-p^{2}-2p.
\frac{-4p}{p^{2}-4}
Expand \left(p-2\right)\left(p+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}