Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. p
Tick mark Image

Similar Problems from Web Search

Share

\frac{p}{3p-4}-\frac{2}{p^{2}-6}
Multiply p and p to get p^{2}.
\frac{p\left(p^{2}-6\right)}{\left(3p-4\right)\left(p^{2}-6\right)}-\frac{2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3p-4 and p^{2}-6 is \left(3p-4\right)\left(p^{2}-6\right). Multiply \frac{p}{3p-4} times \frac{p^{2}-6}{p^{2}-6}. Multiply \frac{2}{p^{2}-6} times \frac{3p-4}{3p-4}.
\frac{p\left(p^{2}-6\right)-2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)}
Since \frac{p\left(p^{2}-6\right)}{\left(3p-4\right)\left(p^{2}-6\right)} and \frac{2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{3}-6p-6p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Do the multiplications in p\left(p^{2}-6\right)-2\left(3p-4\right).
\frac{p^{3}-12p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Combine like terms in p^{3}-6p-6p+8.
\frac{p^{3}-12p+8}{3p^{3}-4p^{2}-18p+24}
Expand \left(3p-4\right)\left(p^{2}-6\right).