Evaluate
\frac{p^{3}-12p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Differentiate w.r.t. p
\frac{4\left(-p^{4}+9p^{3}-12p^{2}+16p-36\right)}{\left(\left(3p-4\right)\left(p^{2}-6\right)\right)^{2}}
Share
Copied to clipboard
\frac{p}{3p-4}-\frac{2}{p^{2}-6}
Multiply p and p to get p^{2}.
\frac{p\left(p^{2}-6\right)}{\left(3p-4\right)\left(p^{2}-6\right)}-\frac{2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3p-4 and p^{2}-6 is \left(3p-4\right)\left(p^{2}-6\right). Multiply \frac{p}{3p-4} times \frac{p^{2}-6}{p^{2}-6}. Multiply \frac{2}{p^{2}-6} times \frac{3p-4}{3p-4}.
\frac{p\left(p^{2}-6\right)-2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)}
Since \frac{p\left(p^{2}-6\right)}{\left(3p-4\right)\left(p^{2}-6\right)} and \frac{2\left(3p-4\right)}{\left(3p-4\right)\left(p^{2}-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{3}-6p-6p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Do the multiplications in p\left(p^{2}-6\right)-2\left(3p-4\right).
\frac{p^{3}-12p+8}{\left(3p-4\right)\left(p^{2}-6\right)}
Combine like terms in p^{3}-6p-6p+8.
\frac{p^{3}-12p+8}{3p^{3}-4p^{2}-18p+24}
Expand \left(3p-4\right)\left(p^{2}-6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}