\frac { p } { 25 } \times 80 \% = 14
Solve for p
p = \frac{875}{2} = 437\frac{1}{2} = 437.5
Share
Copied to clipboard
4p\times \frac{80}{100}=1400
Multiply both sides of the equation by 100, the least common multiple of 25,100.
4p\times \frac{4}{5}=1400
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{4\times 4}{5}p=1400
Express 4\times \frac{4}{5} as a single fraction.
\frac{16}{5}p=1400
Multiply 4 and 4 to get 16.
p=1400\times \frac{5}{16}
Multiply both sides by \frac{5}{16}, the reciprocal of \frac{16}{5}.
p=\frac{1400\times 5}{16}
Express 1400\times \frac{5}{16} as a single fraction.
p=\frac{7000}{16}
Multiply 1400 and 5 to get 7000.
p=\frac{875}{2}
Reduce the fraction \frac{7000}{16} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}