Evaluate
\frac{q\left(p+q\right)}{6p^{2}}
Expand
\frac{pq+q^{2}}{6p^{2}}
Share
Copied to clipboard
\frac{\left(p^{2}-q^{2}\right)pq^{2}}{2p^{3}q\left(3p-3q\right)}
Divide \frac{p^{2}-q^{2}}{2p^{3}q} by \frac{3p-3q}{pq^{2}} by multiplying \frac{p^{2}-q^{2}}{2p^{3}q} by the reciprocal of \frac{3p-3q}{pq^{2}}.
\frac{q\left(p^{2}-q^{2}\right)}{2\left(3p-3q\right)p^{2}}
Cancel out pq in both numerator and denominator.
\frac{q\left(p+q\right)\left(p-q\right)}{2\times 3\left(p-q\right)p^{2}}
Factor the expressions that are not already factored.
\frac{q\left(p+q\right)}{2\times 3p^{2}}
Cancel out p-q in both numerator and denominator.
\frac{pq+q^{2}}{6p^{2}}
Expand the expression.
\frac{\left(p^{2}-q^{2}\right)pq^{2}}{2p^{3}q\left(3p-3q\right)}
Divide \frac{p^{2}-q^{2}}{2p^{3}q} by \frac{3p-3q}{pq^{2}} by multiplying \frac{p^{2}-q^{2}}{2p^{3}q} by the reciprocal of \frac{3p-3q}{pq^{2}}.
\frac{q\left(p^{2}-q^{2}\right)}{2\left(3p-3q\right)p^{2}}
Cancel out pq in both numerator and denominator.
\frac{q\left(p+q\right)\left(p-q\right)}{2\times 3\left(p-q\right)p^{2}}
Factor the expressions that are not already factored.
\frac{q\left(p+q\right)}{2\times 3p^{2}}
Cancel out p-q in both numerator and denominator.
\frac{pq+q^{2}}{6p^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}