Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(p^{2}-36q^{2}\right)\left(p^{2}-pq-42q^{2}\right)}{\left(p^{2}q-14pq^{2}+49q^{3}\right)\left(18q-3p\right)}
Divide \frac{p^{2}-36q^{2}}{p^{2}q-14pq^{2}+49q^{3}} by \frac{18q-3p}{p^{2}-pq-42q^{2}} by multiplying \frac{p^{2}-36q^{2}}{p^{2}q-14pq^{2}+49q^{3}} by the reciprocal of \frac{18q-3p}{p^{2}-pq-42q^{2}}.
\frac{\left(p-7q\right)\left(p-6q\right)\left(p+6q\right)^{2}}{3q\left(-p+6q\right)\left(p-7q\right)^{2}}
Factor the expressions that are not already factored.
\frac{-\left(p-7q\right)\left(-p+6q\right)\left(p+6q\right)^{2}}{3q\left(-p+6q\right)\left(p-7q\right)^{2}}
Extract the negative sign in p-6q.
\frac{-\left(p+6q\right)^{2}}{3q\left(p-7q\right)}
Cancel out \left(p-7q\right)\left(-p+6q\right) in both numerator and denominator.
\frac{-p^{2}-12pq-36q^{2}}{3pq-21q^{2}}
Expand the expression.
\frac{\left(p^{2}-36q^{2}\right)\left(p^{2}-pq-42q^{2}\right)}{\left(p^{2}q-14pq^{2}+49q^{3}\right)\left(18q-3p\right)}
Divide \frac{p^{2}-36q^{2}}{p^{2}q-14pq^{2}+49q^{3}} by \frac{18q-3p}{p^{2}-pq-42q^{2}} by multiplying \frac{p^{2}-36q^{2}}{p^{2}q-14pq^{2}+49q^{3}} by the reciprocal of \frac{18q-3p}{p^{2}-pq-42q^{2}}.
\frac{\left(p-7q\right)\left(p-6q\right)\left(p+6q\right)^{2}}{3q\left(-p+6q\right)\left(p-7q\right)^{2}}
Factor the expressions that are not already factored.
\frac{-\left(p-7q\right)\left(-p+6q\right)\left(p+6q\right)^{2}}{3q\left(-p+6q\right)\left(p-7q\right)^{2}}
Extract the negative sign in p-6q.
\frac{-\left(p+6q\right)^{2}}{3q\left(p-7q\right)}
Cancel out \left(p-7q\right)\left(-p+6q\right) in both numerator and denominator.
\frac{-p^{2}-12pq-36q^{2}}{3pq-21q^{2}}
Expand the expression.