Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(p+q-r\right)\left(p-q+r\right)}{\left(p+q+r\right)\left(p-q+r\right)}+\frac{q^{2}-\left(p-r\right)^{2}}{\left(p+q\right)^{2}-r^{2}}+\frac{r^{2}-\left(p-q\right)^{2}}{\left(q+r\right)^{2}-p^{2}}
Factor the expressions that are not already factored in \frac{p^{2}-\left(q-r\right)^{2}}{\left(p+r\right)^{2}-q^{2}}.
\frac{p+q-r}{p+q+r}+\frac{q^{2}-\left(p-r\right)^{2}}{\left(p+q\right)^{2}-r^{2}}+\frac{r^{2}-\left(p-q\right)^{2}}{\left(q+r\right)^{2}-p^{2}}
Cancel out p-q+r in both numerator and denominator.
\frac{p+q-r}{p+q+r}+\frac{\left(p+q-r\right)\left(-p+q+r\right)}{\left(p+q+r\right)\left(p+q-r\right)}+\frac{r^{2}-\left(p-q\right)^{2}}{\left(q+r\right)^{2}-p^{2}}
Factor the expressions that are not already factored in \frac{q^{2}-\left(p-r\right)^{2}}{\left(p+q\right)^{2}-r^{2}}.
\frac{p+q-r}{p+q+r}+\frac{-p+q+r}{p+q+r}+\frac{r^{2}-\left(p-q\right)^{2}}{\left(q+r\right)^{2}-p^{2}}
Cancel out p+q-r in both numerator and denominator.
\frac{p+q-r}{p+q+r}+\frac{-p+q+r}{p+q+r}+\frac{\left(p-q+r\right)\left(-p+q+r\right)}{\left(p+q+r\right)\left(-p+q+r\right)}
Factor the expressions that are not already factored in \frac{r^{2}-\left(p-q\right)^{2}}{\left(q+r\right)^{2}-p^{2}}.
\frac{p+q-r}{p+q+r}+\frac{-p+q+r}{p+q+r}+\frac{p-q+r}{p+q+r}
Cancel out -p+q+r in both numerator and denominator.
\frac{p+q-r-p+q+r}{p+q+r}+\frac{p-q+r}{p+q+r}
Since \frac{p+q-r}{p+q+r} and \frac{-p+q+r}{p+q+r} have the same denominator, add them by adding their numerators.
\frac{2q}{p+q+r}+\frac{p-q+r}{p+q+r}
Combine like terms in p+q-r-p+q+r.
\frac{2q+p-q+r}{p+q+r}
Since \frac{2q}{p+q+r} and \frac{p-q+r}{p+q+r} have the same denominator, add them by adding their numerators.
\frac{q+p+r}{p+q+r}
Combine like terms in 2q+p-q+r.
1
Cancel out p+q+r in both numerator and denominator.