Solve for p
p=-2
Share
Copied to clipboard
\left(p+6\right)\left(p+5\right)=\left(p-4\right)p
Variable p cannot be equal to any of the values -6,4 since division by zero is not defined. Multiply both sides of the equation by \left(p-4\right)\left(p+6\right), the least common multiple of p-4,p+6.
p^{2}+11p+30=\left(p-4\right)p
Use the distributive property to multiply p+6 by p+5 and combine like terms.
p^{2}+11p+30=p^{2}-4p
Use the distributive property to multiply p-4 by p.
p^{2}+11p+30-p^{2}=-4p
Subtract p^{2} from both sides.
11p+30=-4p
Combine p^{2} and -p^{2} to get 0.
11p+30+4p=0
Add 4p to both sides.
15p+30=0
Combine 11p and 4p to get 15p.
15p=-30
Subtract 30 from both sides. Anything subtracted from zero gives its negation.
p=\frac{-30}{15}
Divide both sides by 15.
p=-2
Divide -30 by 15 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}