Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)}+\frac{p-q}{\left(p+2\right)\left(p-q\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-q and p+2 is \left(p+2\right)\left(p-q\right). Multiply \frac{p+3}{p-q} times \frac{p+2}{p+2}. Multiply \frac{1}{p+2} times \frac{p-q}{p-q}.
\frac{\left(p+3\right)\left(p+2\right)+p-q}{\left(p+2\right)\left(p-q\right)}
Since \frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)} and \frac{p-q}{\left(p+2\right)\left(p-q\right)} have the same denominator, add them by adding their numerators.
\frac{p^{2}+2p+3p+6+p-q}{\left(p+2\right)\left(p-q\right)}
Do the multiplications in \left(p+3\right)\left(p+2\right)+p-q.
\frac{p^{2}+6p+6-q}{\left(p+2\right)\left(p-q\right)}
Combine like terms in p^{2}+2p+3p+6+p-q.
\frac{p^{2}+6p+6-q}{p^{2}-pq+2p-2q}
Expand \left(p+2\right)\left(p-q\right).
\frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)}+\frac{p-q}{\left(p+2\right)\left(p-q\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-q and p+2 is \left(p+2\right)\left(p-q\right). Multiply \frac{p+3}{p-q} times \frac{p+2}{p+2}. Multiply \frac{1}{p+2} times \frac{p-q}{p-q}.
\frac{\left(p+3\right)\left(p+2\right)+p-q}{\left(p+2\right)\left(p-q\right)}
Since \frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)} and \frac{p-q}{\left(p+2\right)\left(p-q\right)} have the same denominator, add them by adding their numerators.
\frac{p^{2}+2p+3p+6+p-q}{\left(p+2\right)\left(p-q\right)}
Do the multiplications in \left(p+3\right)\left(p+2\right)+p-q.
\frac{p^{2}+6p+6-q}{\left(p+2\right)\left(p-q\right)}
Combine like terms in p^{2}+2p+3p+6+p-q.
\frac{p^{2}+6p+6-q}{p^{2}-pq+2p-2q}
Expand \left(p+2\right)\left(p-q\right).