Evaluate
\frac{p^{2}+6p-q+6}{\left(p+2\right)\left(p-q\right)}
Expand
\frac{p^{2}+6p-q+6}{\left(p+2\right)\left(p-q\right)}
Share
Copied to clipboard
\frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)}+\frac{p-q}{\left(p+2\right)\left(p-q\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-q and p+2 is \left(p+2\right)\left(p-q\right). Multiply \frac{p+3}{p-q} times \frac{p+2}{p+2}. Multiply \frac{1}{p+2} times \frac{p-q}{p-q}.
\frac{\left(p+3\right)\left(p+2\right)+p-q}{\left(p+2\right)\left(p-q\right)}
Since \frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)} and \frac{p-q}{\left(p+2\right)\left(p-q\right)} have the same denominator, add them by adding their numerators.
\frac{p^{2}+2p+3p+6+p-q}{\left(p+2\right)\left(p-q\right)}
Do the multiplications in \left(p+3\right)\left(p+2\right)+p-q.
\frac{p^{2}+6p+6-q}{\left(p+2\right)\left(p-q\right)}
Combine like terms in p^{2}+2p+3p+6+p-q.
\frac{p^{2}+6p+6-q}{p^{2}-pq+2p-2q}
Expand \left(p+2\right)\left(p-q\right).
\frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)}+\frac{p-q}{\left(p+2\right)\left(p-q\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-q and p+2 is \left(p+2\right)\left(p-q\right). Multiply \frac{p+3}{p-q} times \frac{p+2}{p+2}. Multiply \frac{1}{p+2} times \frac{p-q}{p-q}.
\frac{\left(p+3\right)\left(p+2\right)+p-q}{\left(p+2\right)\left(p-q\right)}
Since \frac{\left(p+3\right)\left(p+2\right)}{\left(p+2\right)\left(p-q\right)} and \frac{p-q}{\left(p+2\right)\left(p-q\right)} have the same denominator, add them by adding their numerators.
\frac{p^{2}+2p+3p+6+p-q}{\left(p+2\right)\left(p-q\right)}
Do the multiplications in \left(p+3\right)\left(p+2\right)+p-q.
\frac{p^{2}+6p+6-q}{\left(p+2\right)\left(p-q\right)}
Combine like terms in p^{2}+2p+3p+6+p-q.
\frac{p^{2}+6p+6-q}{p^{2}-pq+2p-2q}
Expand \left(p+2\right)\left(p-q\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}