Solve for p
p=-13
Share
Copied to clipboard
\left(p-2\right)\left(p+1\right)=\left(p-5\right)\left(p+3\right)
Variable p cannot be equal to any of the values 2,5 since division by zero is not defined. Multiply both sides of the equation by \left(p-5\right)\left(p-2\right), the least common multiple of p-5,p-2.
p^{2}-p-2=\left(p-5\right)\left(p+3\right)
Use the distributive property to multiply p-2 by p+1 and combine like terms.
p^{2}-p-2=p^{2}-2p-15
Use the distributive property to multiply p-5 by p+3 and combine like terms.
p^{2}-p-2-p^{2}=-2p-15
Subtract p^{2} from both sides.
-p-2=-2p-15
Combine p^{2} and -p^{2} to get 0.
-p-2+2p=-15
Add 2p to both sides.
p-2=-15
Combine -p and 2p to get p.
p=-15+2
Add 2 to both sides.
p=-13
Add -15 and 2 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}