Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{p+1}{\left(p-3\right)\left(p+1\right)}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Factor the expressions that are not already factored in \frac{p+1}{p^{2}-2p-3}.
\frac{1}{p-3}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Cancel out p+1 in both numerator and denominator.
\frac{1}{p-3}-\frac{1}{p\left(p+1\right)}-\frac{3}{p^{2}-3p}
Factor p^{2}+p.
\frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{p-3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-3 and p\left(p+1\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{1}{p-3} times \frac{p\left(p+1\right)}{p\left(p+1\right)}. Multiply \frac{1}{p\left(p+1\right)} times \frac{p-3}{p-3}.
\frac{p\left(p+1\right)-\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Since \frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} and \frac{p-3}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+p-p+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Do the multiplications in p\left(p+1\right)-\left(p-3\right).
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Combine like terms in p^{2}+p-p+3.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p\left(p-3\right)}
Factor p^{2}-3p.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p\left(p-3\right)\left(p+1\right) and p\left(p-3\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{3}{p\left(p-3\right)} times \frac{p+1}{p+1}.
\frac{p^{2}+3-3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
Since \frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)} and \frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+3-3p-3}{p\left(p-3\right)\left(p+1\right)}
Do the multiplications in p^{2}+3-3\left(p+1\right).
\frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}
Combine like terms in p^{2}+3-3p-3.
\frac{p\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}
Factor the expressions that are not already factored in \frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}.
\frac{1}{p+1}
Cancel out p\left(p-3\right) in both numerator and denominator.
\frac{p+1}{\left(p-3\right)\left(p+1\right)}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Factor the expressions that are not already factored in \frac{p+1}{p^{2}-2p-3}.
\frac{1}{p-3}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Cancel out p+1 in both numerator and denominator.
\frac{1}{p-3}-\frac{1}{p\left(p+1\right)}-\frac{3}{p^{2}-3p}
Factor p^{2}+p.
\frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{p-3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-3 and p\left(p+1\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{1}{p-3} times \frac{p\left(p+1\right)}{p\left(p+1\right)}. Multiply \frac{1}{p\left(p+1\right)} times \frac{p-3}{p-3}.
\frac{p\left(p+1\right)-\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Since \frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} and \frac{p-3}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+p-p+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Do the multiplications in p\left(p+1\right)-\left(p-3\right).
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Combine like terms in p^{2}+p-p+3.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p\left(p-3\right)}
Factor p^{2}-3p.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p\left(p-3\right)\left(p+1\right) and p\left(p-3\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{3}{p\left(p-3\right)} times \frac{p+1}{p+1}.
\frac{p^{2}+3-3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
Since \frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)} and \frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+3-3p-3}{p\left(p-3\right)\left(p+1\right)}
Do the multiplications in p^{2}+3-3\left(p+1\right).
\frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}
Combine like terms in p^{2}+3-3p-3.
\frac{p\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}
Factor the expressions that are not already factored in \frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}.
\frac{1}{p+1}
Cancel out p\left(p-3\right) in both numerator and denominator.