Evaluate
\frac{1}{p+1}
Expand
\frac{1}{p+1}
Share
Copied to clipboard
\frac{p+1}{\left(p-3\right)\left(p+1\right)}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Factor the expressions that are not already factored in \frac{p+1}{p^{2}-2p-3}.
\frac{1}{p-3}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Cancel out p+1 in both numerator and denominator.
\frac{1}{p-3}-\frac{1}{p\left(p+1\right)}-\frac{3}{p^{2}-3p}
Factor p^{2}+p.
\frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{p-3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-3 and p\left(p+1\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{1}{p-3} times \frac{p\left(p+1\right)}{p\left(p+1\right)}. Multiply \frac{1}{p\left(p+1\right)} times \frac{p-3}{p-3}.
\frac{p\left(p+1\right)-\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Since \frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} and \frac{p-3}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+p-p+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Do the multiplications in p\left(p+1\right)-\left(p-3\right).
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Combine like terms in p^{2}+p-p+3.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p\left(p-3\right)}
Factor p^{2}-3p.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p\left(p-3\right)\left(p+1\right) and p\left(p-3\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{3}{p\left(p-3\right)} times \frac{p+1}{p+1}.
\frac{p^{2}+3-3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
Since \frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)} and \frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+3-3p-3}{p\left(p-3\right)\left(p+1\right)}
Do the multiplications in p^{2}+3-3\left(p+1\right).
\frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}
Combine like terms in p^{2}+3-3p-3.
\frac{p\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}
Factor the expressions that are not already factored in \frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}.
\frac{1}{p+1}
Cancel out p\left(p-3\right) in both numerator and denominator.
\frac{p+1}{\left(p-3\right)\left(p+1\right)}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Factor the expressions that are not already factored in \frac{p+1}{p^{2}-2p-3}.
\frac{1}{p-3}-\frac{1}{p^{2}+p}-\frac{3}{p^{2}-3p}
Cancel out p+1 in both numerator and denominator.
\frac{1}{p-3}-\frac{1}{p\left(p+1\right)}-\frac{3}{p^{2}-3p}
Factor p^{2}+p.
\frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{p-3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-3 and p\left(p+1\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{1}{p-3} times \frac{p\left(p+1\right)}{p\left(p+1\right)}. Multiply \frac{1}{p\left(p+1\right)} times \frac{p-3}{p-3}.
\frac{p\left(p+1\right)-\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Since \frac{p\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} and \frac{p-3}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+p-p+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Do the multiplications in p\left(p+1\right)-\left(p-3\right).
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p^{2}-3p}
Combine like terms in p^{2}+p-p+3.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3}{p\left(p-3\right)}
Factor p^{2}-3p.
\frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)}-\frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p\left(p-3\right)\left(p+1\right) and p\left(p-3\right) is p\left(p-3\right)\left(p+1\right). Multiply \frac{3}{p\left(p-3\right)} times \frac{p+1}{p+1}.
\frac{p^{2}+3-3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)}
Since \frac{p^{2}+3}{p\left(p-3\right)\left(p+1\right)} and \frac{3\left(p+1\right)}{p\left(p-3\right)\left(p+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+3-3p-3}{p\left(p-3\right)\left(p+1\right)}
Do the multiplications in p^{2}+3-3\left(p+1\right).
\frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}
Combine like terms in p^{2}+3-3p-3.
\frac{p\left(p-3\right)}{p\left(p-3\right)\left(p+1\right)}
Factor the expressions that are not already factored in \frac{p^{2}-3p}{p\left(p-3\right)\left(p+1\right)}.
\frac{1}{p+1}
Cancel out p\left(p-3\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}