Solve for o
o=-20+\frac{50}{t}
t\neq 0
Solve for t
t=\frac{50}{o+20}
o\neq -20
Share
Copied to clipboard
ot+20t=50
Multiply both sides of the equation by 10.
ot=50-20t
Subtract 20t from both sides.
to=50-20t
The equation is in standard form.
\frac{to}{t}=\frac{50-20t}{t}
Divide both sides by t.
o=\frac{50-20t}{t}
Dividing by t undoes the multiplication by t.
o=-20+\frac{50}{t}
Divide 50-20t by t.
ot+20t=50
Multiply both sides of the equation by 10.
\left(o+20\right)t=50
Combine all terms containing t.
\frac{\left(o+20\right)t}{o+20}=\frac{50}{o+20}
Divide both sides by o+20.
t=\frac{50}{o+20}
Dividing by o+20 undoes the multiplication by o+20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}