Solve for n
n=\frac{3n_{t}}{5}+1
n_{t}\neq 0
Solve for n_t
n_{t}=\frac{5\left(n-1\right)}{3}
n\neq 1
Share
Copied to clipboard
3n_{t}=5\left(n-1\right)
Variable n cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 3\left(n-1\right), the least common multiple of n-1,3.
3n_{t}=5n-5
Use the distributive property to multiply 5 by n-1.
5n-5=3n_{t}
Swap sides so that all variable terms are on the left hand side.
5n=3n_{t}+5
Add 5 to both sides.
\frac{5n}{5}=\frac{3n_{t}+5}{5}
Divide both sides by 5.
n=\frac{3n_{t}+5}{5}
Dividing by 5 undoes the multiplication by 5.
n=\frac{3n_{t}}{5}+1
Divide 3n_{t}+5 by 5.
n=\frac{3n_{t}}{5}+1\text{, }n\neq 1
Variable n cannot be equal to 1.
3n_{t}=5\left(n-1\right)
Multiply both sides of the equation by 3\left(n-1\right), the least common multiple of n-1,3.
3n_{t}=5n-5
Use the distributive property to multiply 5 by n-1.
\frac{3n_{t}}{3}=\frac{5n-5}{3}
Divide both sides by 3.
n_{t}=\frac{5n-5}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}