Solve for η_p
\eta _{p}=\frac{n_{k}}{60}
n_{k}\neq 0
Solve for n_k
n_{k}=60\eta _{p}
\eta _{p}\neq 0
Share
Copied to clipboard
n_{k}=\eta _{p}\times 60
Variable \eta _{p} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by \eta _{p}.
\eta _{p}\times 60=n_{k}
Swap sides so that all variable terms are on the left hand side.
60\eta _{p}=n_{k}
The equation is in standard form.
\frac{60\eta _{p}}{60}=\frac{n_{k}}{60}
Divide both sides by 60.
\eta _{p}=\frac{n_{k}}{60}
Dividing by 60 undoes the multiplication by 60.
\eta _{p}=\frac{n_{k}}{60}\text{, }\eta _{p}\neq 0
Variable \eta _{p} cannot be equal to 0.
n_{k}=\eta _{p}\times 60
Multiply both sides of the equation by \eta _{p}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}